Cloud Radio Access Network (C-RAN) will become a main building block for 5G. However, the stringent requirements of current fronthaul solutions hinder its large-scale deployment. In order to introduce C-RAN widely in 5G, the next generation fronthaul interface (NGFI) will be based on a cost-efficient packet-based network with higher path diversity. In addition, NGFI shall support a flexible functional split of the RAN to adapt the amount of centralization to the capabilities of the transport network. In this paper we question the ability of standard techniques to route NGFI traffic while maximizing the centralization degree—the goal of C-RAN. We propose two solutions jointly addressing both challenges: (i) a nearly-optimal backtracking scheme, and (ii) a low-complex greedy approach. We first validate the feasibility of our approach in an experimental proof-of-concept, and then evaluate both algorithms via simulations in large-scale (real and synthetic) topologies. Our results show that state-of-the-art techniques fail at maximizing the centralization degree and that the achievable C-RAN centralization highly depends on the underlying topology structure.
More detail can easily be written here using Markdown and $\rm \LaTeX$ math code.