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Abstract—The rapid evolution of 5G networks, with diverse
traffic classes and demanding services, highlights the importance
of Open Radio Access Networks (O-RAN) for enabling RAN
intelligence and performance optimization. Machine Learning-
powered xApps offer novel network control opportunities, but
their resource demands necessitate efficient orchestration. To
address these issues, we present OREO, an O-RAN xApp
orchestrator that, using a multi-layer graph model, aims to
maximize the number of RAN services concurrently deployed
while minimizing their overall energy consumption. OREO’s key
innovation lies in the concept of sharing xApps across RAN
services when they include semantically equivalent functions and
meet quality requirements. Despite the NP-hard nature of the
problem, numerical results show that OREO offers a lightweight
and scalable solution that closely and swiftly approximates the
optimum in several different scenarios. Also, OREO outperforms
state-of-the-art benchmarks by enabling the co-existence of more
RAN services (14.3% more on average and up to 22%), while
reducing resource expenditure (by 48.7% less on average and up
to 123% for computing resources). Moreover, using an experi-
mental prototype deployed on the Colosseum network emulator
and using real-world RAN services, we show that OREO leads to
substantial resource savings (up to 66.7% of computing resources)
while its xApp sharing policy can significantly enhance quality
of service.

Index Terms—Radio Access Network, Resource orchestration,
O-RAN, Network services

I. INTRODUCTION

As 5G mobile networks continue to gain momentum, the
limitations of the traditional monolithic Radio Access Net-
work (RAN) architecture have emerged in accommodating a
growing number of traffic classes and demanding services [2].
Indeed, conventional RAN architectures encompass monolithic
components that are tightly bundled and supplied by a handful
of vendors. This approach poses challenges such as limited
reconfigurability, which hinders support for innovative appli-
cations and restricts deployment options for operators due to
vendor lock-in [3].
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To overcome the rigidity of deploying and orchestrating
the network and its services, embracing cutting-edge RAN
solutions grounded in virtualization and openness principles is
essential [4], [5]. To this end, the O-RAN Alliance spearheads
the development of O-RAN, which promotes openness and
flexibility in the RAN by defining open standard interfaces and
ensuring compatibility between disaggregated multi-vendor
components. Additionally, O-RAN integrates Radio Intelligent
Controllers (RICs) within the RAN, facilitating the collection
of telemetry data and the implementation of customized con-
trol logic.

O-RAN enables Mobile Network Operators (MNOs) to
deliver intelligent network services within the RAN. Hereafter,
we refer to these as “RAN services” or simply “services.” RAN
services are specialized functionalities designed to enhance
the overall performance, efficiency, and adaptability of mobile
networks. These services typically leverage intelligent and
automated processes to optimize resource allocation, improve
user experience, and support network operations. Examples in-
clude dynamic spectrum management, traffic steering, energy-
efficient operation, and real-time network analytics [6], [7].

RICs facilitate the deployment of services by hosting
third-party applications driven by Artificial Intelligence (AI)
and Machine Learning (ML), enabling closed-loop control
and self-optimization. These applications operate on diverse
timescales, ranging from sub-second (xApps) to longer-term
(rApps) optimization.

Rooting xApps in AI/ML places substantial demands on
O-Cloud resources – the computing platform hosting O-
RAN software components. However, the O-Cloud offers
limited computing resources, shared among concurrently run-
ning xApps from potentially different tenants. Consequently,
it becomes crucial to minimize the computational footprint
of these apps while still meeting the target performance
of the services they provide. Note that reducing resource
consumption in the O-Cloud not only decreases the operational
expenditure of RANs, representing 40% of the total costs in
cellular network [8], but it also contributes to decrease energy
consumption.

Existing research gap. Designing an efficient policy for
orchestrating RAN intelligence in O-RAN platforms remains
an open challenge. While numerous state-of-the-art orches-
tration frameworks exist (as discussed in Sec. VII), they fall
short in fully addressing the complexities of O-RAN man-
agement. These frameworks often focus either on traditional
RAN orchestration problems, such as optimizing resource
management and energy efficiency, or partially tackle O-RAN
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intelligence orchestration by solely addressing deployment
without optimizing configuration. Conversely, some cutting-
edge frameworks offer solutions to O-RAN intelligence or-
chestration but consider only monolithic services and xApps
with oversized resource allocations, leading to sub-optimal
RAN management.

Filling this gap presents multiple technical challenges.
Foremost is the development of an orchestration policy that
can identify the optimal service configuration. This involves
several key steps: (i) selecting the most suitable set of xApps
from the near-real-time (near-RT) RIC’s catalog, ensuring they
align with the service’s functional requirements; (ii) verifying
that the selected xApps have the capability to effectively
execute the specific functions needed for the service; (iii)
determining the appropriate complexity level for the xApps
to guarantee they deliver output with sufficient accuracy and
confidence to meet the service’s quality standards; and (iv)
allocating computational resources (CPU, GPU) and memory
(RAM, disk space) to the xApps, finding a balance between
meeting service latency requirements and staying within the
available resource budget.

Summary of novel contributions. To address this prob-
lem, we introduce the O-RAN intElligence Orchestration
(OREO) framework. OREO determines the optimal selection
and configuration of xApps to fulfill network service demands
provided by MNO, meeting specific requirements while mini-
mizing resource expenditure. Compared to the state-of-the-art,
OREO provides the following distinct key features:

• NFV Integration: OREO embraces Network Function
Virtualization (NFV) within O-RAN, conceiving RAN
services (e.g., beam allocation, handover prediction) as
interconnected elementary RAN functions (e.g., load
forecasting, traffic classification, decision policies). This
approach fosters service agility, flexibility, scalability, and
enables the sharing of common functions across services.

• Scope-aware Optimization: OREO optimizes resource
allocation to xApps, taking into account their ability to
operate across various scopes (i.e., operational semantics)
to exploit xApps sharing supporting concurrent services.

• Function Variability: The dynamic O-RAN market fos-
ters diverse implementations for individual functions,
resulting in different trade-offs between output quality,
resource consumption, and execution speed. As detailed
in Sec. II-A, OREO exploits such diversity (which we
codify with different complexity levels) for the deploy-
ment of functions within xApps to maximize efficiency
while providing service performance guarantees.

We evaluate OREO through extensive numerical as well as
experimental results obtained through the Colosseum network
emulator [9]. Our results show that OREO can support a
number of services close to the optimum, and, compared to
state-of-the-art solutions, OREO enables the co-existence of
more services (14.3% more on average and up to 22%), while
reducing resource expenditure (by 48.7% less on average and
up to 123% for computing resources). Moreover, using our
experimental prototype deployed on the Colosseum emulator
and using real-world RAN services, we show that OREO leads

to substantial resource savings (up to 66.7% of computing
resources) while its xApp sharing policy can significantly
enhance quality of service (up to 11.3% increase in average
throughput and 13.1% reduction in buffer occupancy for,
respectively, Enhanced Mobile Broadband (eMBB) and Ultra-
Reliable Low Latency Communication (URLLC) users).

This paper also extends substantially our previous confer-
ence publication [1]:

• We have re-designed a large portion of OREO’s frame-
work to enhance agility. We have achieved this through
a more efficient decomposition approach and pruning
technique to reduce the solution space.

• We have extended our numerical evaluation, which now
shows OREO’s ability to orchestrate RAN services even
in very large scenarios.

• We have improved the experimental assessments of
OREO by conducting tests using Colosseum [9], the well-
known O-RAN emulator, and real-world RAN services.
These new experiments demonstrate OREO’s effective-
ness in resource allocation and its ability to meet service
KPI targets.

Paper organization. The rest of the paper is organized as
follows. Sec. II introduces the driving purpose and distinctive
features of OREO framework. Sec. III presents the system
model and formulates the xApp Deployment and Sharing
(xDeSh) problem. The iterative heuristic method we designed
to address the xDeSh problem is described in Sec. IV. The
latter involves Lagrangian relaxation and decoupling methods
(Sec. IV-B), followed by an algorithm ensuring the feasibility
of the obtained solution (Sec. IV-D). Sec. V and Sec. VI
present, respectively, the numerical evaluation and the experi-
mental prototype and validation of OREO. Sec. VII discusses
some relevant work in the RAN intelligence orchestration field.
Finally, Sec. VIII concludes the paper.

II. THE OREO FRAMEWORK

This section presents the OREO framework, first outlining
its purpose in an O-RAN system and describing the distinctive
features of its engine (Sec. II-A), and then providing the
rationale behind its design and its integration within the O-
RAN architecture (Sec. II-B).

A. OREO driving purpose and distinctive features

The success of next-generation mobile networks greatly
hinges upon the quality of RAN intelligence and, hence,
upon the performance of its orchestration framework, which
is responsible for deploying RAN services [10].

Our orchestrator, OREO, acts upon a set of service requests
by the MNOs in an O-RAN platform. Given such requests,
OREO selects the xApp(s) required to deploy the services
in the near-RT RIC, and the specific xApps configuration
that lets a service meet its performance requirements while
matching the resource availability in the platform. OREO’s
orchestration decisions are made by its core component, the
OREO engine, which greatly differs from state-of-the-art O-
RAN orchestrators such as the pioneering work in [11].
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A key differentiating principle that drives the design of the
OREO engine consists of conceiving RAN services as sets
of interconnected functions rather than monolithic entities.
This approach capitalizes on the known benefits of the NFV
paradigm, such as enhanced flexibility, scalability, and cost-
effectiveness [12]. By recognizing that RAN services can
be built by interconnecting elementary RAN management
functions, OREO leverages xApps as fundamental building
blocks to efficiently offer such services. More specifically,

• Service composition: Each network service request fed by
an MNO to the OREO engine is associated with a mini-
mum service quality and a maximum response latency
requirement. Depending on such performance targets,
services can be deployed by using different configura-
tions: each configuration corresponds to a different set of
functions, with each function implementing a certain task.
As an example, network slicing can be enabled through
a single function implementing a reinforcement learning
(RL)-based policy, as in [13], or combining such function
with a traffic predictor that feeds its output to the RL
model for improved system response to changes in the
traffic conditions.

• Implementing service functions through xApps: Addition-
ally, each function can be implemented through mul-
tiple xApps, each instantiated at a different operating
point, hereinafter also referred to as complexity factor.
Importantly, complexity factors provide different trade-
offs between the output quality and processing latency of
the function offered by the xApp and the computational
resources necessary to run that xApp.

Thus, based on the above concepts, in OREO the quality
and response latency incurred by a service depend upon:

• The specific configuration (set of functions) that is se-
lected to enable the service;

• The specific xApps (hence levels of complexity) that
are chosen to implement the functions in the selected
configuration.

The OREO engine identifies the service configuration and
the corresponding xApps in such a way that it can best suit
the service requirements. Furthermore,

• Whenever multiple services require the same function,
OREO allows such services to share the xApp that
implements the semantics of that function, if the xApp
complexity level meets the requirements of the services;

• As the service response latency targets can be fulfilled
by properly setting the resources allocated to the shared
xApps, OREO scales the resources assigned to an xApp
according to the overall load imposed by the correspond-
ing services, as well as the available resource budget.
Importantly, in so doing, OREO avoids resource over-
provisioning, as opposed to relying upon a fixed amount
of resources allocated to xApps as in state-of-the-art
solutions [11].

B. OREO system architecture

The OREO framework, illustrated in Fig. 1, is designed
to be integrated into the O-RAN Service Management and
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Fig. 1: OREO design and integration in the O-RAN architecture. The
workflow (dashed black line) is as follows: (i) the MNO submits
service requests via the HMI; (ii) OREO retrieves the updated status
of computing resources from the O-Cloud Virtualized Infrastructure
Manager via the O2ims interface; (iii) OREO processes service
requests and, with the support of the xApp lifecycle manager,
instructs the O-Cloud via the O2dms interface about which xApps to
deploy in the near-RT RIC .

Orchestration (SMO), which is responsible for managing and
orchestrating all control and monitoring procedures of the
RAN components via the O1 interface. In particular, OREO
operates within the non-RT RIC, which supports the execution
of third-party applications known as rApps and, through the
A1 interface and the support of the Near-RT RIC, enables
closed-loop control of the RAN. The entire O-RAN deploy-
ment runs in the O-Cloud, a computing platform comprising
a collection of physical infrastructure nodes that meet O-RAN
requirements to host the relevant O-RAN Network Functions
(NFs) (i.e., Near-RT RIC, O-CU-CP, O-CU-UP, and O-DU),
the supporting software components (such as Operating Sys-
tem, Virtual Machine Monitor, Container Runtime, etc.), and
the appropriate management and orchestration functions [14].

OREO receives RAN management intents from MNOs
via the Human-Machine Interface (HMI) [15]. These intents
define the requested services and outline specific parameters,
including the maximum acceptable delay and minimum qual-
ity requirements for each service (Step 1). OREO fetches
the O-Cloud resource availability from Virtual Infrastructure
Manager through the O2 Infrastructure Management Service
(O2ims) interface (Step 2). As mentioned in the previous
section, the OREO engine calculates the deployment of
xApps satisfying the service requests and resource availability
(Step 3). xApps are indeed third-party applications that im-
plement customized logic to drive the RAN efficiently and
run within the near-RT RIC, i.e., the central control and
optimization unit of the RAN operating on a sub-second time
scale. The selected xApps are deployed within the near-RT
RIC using management services, such as the xApp lifecycle
manager provided by the SMO through the O2 Deployment
Management Service (O2dms) interface (Step 4). Through the
E2 interface and open APIs, the near-RT RIC interacts with
the RAN centralized and distributed units (O-CUs and O-
DUs, respectively), collecting RAN performance metrics and
providing control actions.
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Fig. 2: Graph-based representation of the system under study and
relation between its main components. A RAN service can be offered
through many configurations, i.e., combinations of dependent func-
tions. Functions are abstract elementary blocks defining an operation
to perform but not how to perform it. The concrete implementation
of a function, i.e., an xApp, comprises a complexity level indicating
how accurate and resource-demanding it is. For clarity, the xApp
layer only includes the xApps implementing function f1.

As detailed in Sec. VI, we have implemented all OREO
components and integrated them in the O-RAN architecture,
leveraging an O-Cloud platform [16] that hosts the SMO, the
non-RT RIC, and the near-RT RIC. In doing so, we have
developed a proof-of-concept testbed and, using that, we have
measured the performance of the proposed solution in real-
world settings.

III. XDESH: XAPP DEPLOYMENT AND SHARING

We now introduce a model that captures all relevant system
aspects (Sec. III-A) and formulate the xApp Deployment and
Sharing (xDeSh) problem (Sec. III-B).

A. System model

Fig. 2 depicts the main system components, which we
further detail in the following; the notation used in this section
is summarized in Table I.

• Services. An O-RAN service refers to any autonomous
network control and performance optimization service, along
with its associated tasks, operating within the RICs. In par-
ticular, we focus on decision-making services managed by
the near-RT RIC. The O-RAN Alliance has identified several
services [6], [7], including among others, traffic steering (e.g.,
[17]), handover management (e.g., [18]), and QoS-based
resource optimization (e.g., [19]). Each service s is character-
ized by: (i) a target response latency, Ts, which specifies the
maximum acceptable delay to output a decision since a service
request arrives; and (ii) a target decision quality, Qs. The
specific interpretation of quality depends on the nature of the
service (e.g., accuracy for a traffic classification service) but
we assume that services can be objectively assessed. Further,
a service is assigned a priority level ps, which depends on the
revenue generated for the MNO and is used to determine which
services should be dropped in case of insufficient resource
availability.

• Service configurations. A service can be provided using
different configurations, cs ∈ Cs, i.e., sets of interconnected

TABLE I: Notations

Parameters
Symbol Description
s∈S RAN service

Ts (Qs) Target latency of service s under configuration cs
ps Priority of service s

cs∈Cs Service s configuration
Vcs Set of nodes of the service configuration graph cs
f∈F RAN function
χf∈Xf Complexity factor of function f
fχ xApp implementing function f with complexity χ
f
(j)
χ j-th instance of xApp fχ

µ
f
(j)
χ ,mem (disk)

Memory (disk) requirement of xApp f (j)χ

λ
P(f

(j)
χ )

Input data rate of f (j)χ if shared among s∈P(f (j)χ )

θfχ Amount of input data processed by fχ in a CPU cycle
K Set of resource types
B Vector of resource budgets of the different types

qcs,fχ Quality of xApp fχ
l
f
(j)
χ

Processing latency of the j-th instance of xApp fχ

τcs Latency of service s
Decision variables

Symbol Description
zcs Binary variable for service configuration cs selection

v
cs,f

(j)
χ

Binary variable indicating if f (j)χ is used in configuration cs

ρ
f
(j)
χ

Resource allocation for the j-th instance of xApp fχ

elementary functions. Each service configuration is associated
with a level of quality and resource demand, determined by the
set of functions appearing in the configuration. Following the
NFV practices [20], we assume that MNOs pre-define, often
manually, and input the catalog of available service config-
urations. Thus, by properly selecting cs makes it possible to
trade off the performance of a service with its deployment and
running cost.

• Functions. A function f∈F represents a low-level op-
eration and serves as the fundamental building block of
one or more services. Examples of functions include traffic
forecasting and traffic classification. Functions may process
(i) metrics collected by the RAN elements (O-DU, O-CU,
etc.) and shared with the near-RT RIC via the E2 interface;
and/or (ii) information provided by other functions. A service
configuration can then be modeled as a directed graph whose
vertices (Vcs ) and edges represent, respectively, the functions
composing the configuration and the dependency relations
between them. Specifically, an edge exists from function f ′

to function f whenever the execution of f requires the output
of f ′.

• xApps. Each function can be implemented with a different
complexity factor, χf∈Xf . For instance, a traffic classification
function can be provided by different ML models, each
offering a different accuracy-resource demand trade-off. A
specific function with a given complexity factor defines an
xApp, which is thus indicated as fχ = (f, χf ). The xApps
may require specialized data, potentially pre-processed. In
this work, we assume that xApps are designed to handle
the necessary data pre-processing, and that their input/output
interfaces are fully compatible with the O-RAN platform.
Furthermore, as exemplified in Fig. 3, xApps can be shared
by different service configurations. Let P(fχ) be the set of
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service configurations that include xApp fχ, and λP(fχ) be
the rate at which data is fed to, and needs to be processed by,
the xApp per unit of time. We remark that multiple instances
(i.e., replicas) of a given xApp can be implemented and, hence,
coexist in the system; we then denote the j-th instance of fχ
with f (j)χ .

Near-RT RIC

E2
 T

er
m

in
at

io
n

R
A

N     xApp1

     xApp2

     xApp3

Data1

Data2

Service2

Service1

Fig. 3: Illustration of xApp sharing between two services, which
are identified through the green and blue dashed polygons. In this
example, xApp1 operates across two distinct domains, which may
overlap if both services require the xApp with the same operational
semantics.

• Near-RT RIC resources. The O-Cloud can provide the
near-RT RIC with computing and storage resources (e.g., CPU,
GPU, memory) to run xApps. We denote with K={1, . . ., K}
the set of available resource types, and we differentiate among
computing resources as Kτ and storage resources as Kq . The
vector B=[B1, . . ., BK ] collects, for each resource type, the
available resource budget. For simplicity and without loss
of generality, in the following we focus on CPU within
Kτ , and memory and disk storage within Kq . Thus, we
let ρ

f
(j)
χ

=[ρ
f
(j)
χ ,1

, . . . , ρ
f
(j)
χ ,K

], with ρ
f
(j)
χ ,k

≤Bk denote the
amount of resource of type k reserved for the xApp instance
f
(j)
χ , and the corresponding memory and disk requirements

with, respectively, µ
f
(j)
χ ,mem and µ

f
(j)
χ ,disk.

• xApp and service quality. Let qcs,fχ be the quality score
obtained by the xApp fχ associated with service configuration
cs. This score serves as a numerical metric that assesses the
performance of the xApp within its designated service. The
precise meaning of this metric can vary based on the particular
focus of the xApp. For example, in traffic classification tasks,
the quality score typically reflects classification accuracy.
Other common quality metrics might include prediction accu-
racy, regression error, or expected reward. The quality score
qcs,fχ depends on the quality of the input data, which, in turn,
depends on the complexity level associated with the function
f ′ preceding f in the configuration graph. Accordingly, the
quality metric for a service s implemented under configuration
cs, is equal to the quality of the last xApp’s output in the
configuration graph.

• xApp processing and service latency. Given the consid-
ered resource types, as long as memory and disk requirements
(µ

f
(j)
χ ,mem and µ

f
(j)
χ ,disk) are satisfied, only the CPU allocation

has an impact on the xApps processing latency, denoted by
l
f
(j)
χ

(ρ
f
(j)
χ ,cpu) for the j-th instance of xApp fχ. Drawing on

the existing works [21]–[23], we can model a function, f (j)χ ,
that is shared among the service configurations in P(f

(j)
χ ), as

an M/M/1 queue. We can then write the corresponding average
processing latency as:

l
f
(j)
χ

(ρ
f
(j)
χ ,cpu) = (ρ

f
(j)
χ ,cpuθf(j)

χ
− λP(f

(j)
χ )

)−1

where ρ
f
(j)
χ ,cpu is expressed as CPU cycles per second,

and θ
f
(j)
χ

represents the xApp complexity and expresses the
amount of input data processed by the xApp in a CPU cycle,
and λP(f

(j)
χ )

specifies the xApp load when shared among

P(f
(j)
χ ) service configurations. The latter must account for

all the operational semantics (i.e., scopes), required by the
xApp when it is shared across services. For instance, a
traffic predictor depending on the specific network service
can function across various domains − such as user, slice,
or cell − or operate across multiple gNodeBs. Also, let τcs
be the response latency of service s when implemented with
configuration cs. By defining a path πcs on the graph of
configuration cs as a set of edges connecting an input function
with an output function in cs, τs is the latency associated with
the most time-consuming path in the graph. The latency for
collecting data is indeed deemed negligible as the near-RT
RIC periodically exposes data to the xApps. The latency of
a path clearly depends on the complexity factor and resource
allocation of each of the functions composing the path, i.e.,

τcs({ρfχ , χf}fχ∈cs) = argmax
{πcs}

∑
f∈πcs

lfj,χfj
(ρfj ) . (1)

B. xDeSh problem formulation

Given the above model, we now introduce the xDeSh
optimization problem, along with some additional system
variables and parameters defining the current state of the
system. Further, we prove that the xDeSh problem is NP-hard.

• Service configuration selection. Let S be the set includ-
ing both the existing, and still to be kept, services and the
new services to be deployed. For each service s∈S, the OREO
orchestrator identifies the most suitable configuration cs to be
used. We denote with zcs the binary decision variable taking
1 if configuration cs is selected for service s. Notice that:
(i) it may happen that none of the possible configurations of
a service s can be deployed, due to insufficient resources to
guarantee the minimum required service performance; (ii) at
most one configuration per service can be selected. That is,
the following constraint must hold:∑

cs∈Cs

zcs ≤ 1, ∀s ∈ S . (2)

• Selection of xApps to implement and share. Whenever
a function f is required by more than one service, the
orchestrator has to determine whether to let such services
share the same xApp instance f (j)χ , or to implement multiple
instances thereof. In the latter case, the chosen xApps can
implement either the same or different complexity factors. We
thus introduce the binary decision variable v

cs,f
(j)
χ

, to indicate

whether f (j)χ is used by service configuration cs or not. Clearly,
all the functions required by a selected service configuration
must be implemented. Moreover, neglecting the possibility of
horizontally scaling out xApps, a service configuration cannot
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use more than one instance of a given xApp. The above
requirements translate in the following constraint:∑

χ∈Xf

∑
j

v
cs,f

(j)
χ

= zcs , ∀s∈S,∀cs∈Cs,∀f∈Vcs . (3)

Similarly, an xApp implementing function f cannot be asso-
ciated with a service configuration that does not include f :∑

χ∈Xf

∑
j

v
cs,f

(j)
χ

= 0, ∀s∈S, cs∈Cs, f /∈Vcs . (4)

Ultimately, the orchestrator allocates memory and disk
resources for deploying the necessary xApps, while adhering
to the following constraint:

ρ
f
(j)
χ ,k

≥µ
f
(j)
χ ,k

1[∃cs∈Cs|v
cs,f

(j)
χ

=1], ∀k∈Kq (5)

where the indicator function 1 equals one when the subscripted
condition holds, indicating that xApp f (j)χ must be deployed.

• Meeting service requirements. OREO has to select a
service configuration (i.e., the functions that implement the
service) and vertically scales the corresponding computing
resources in such a way that the quality and response latency
targets are satisfied. That is, for any s∈S and cs∈Cs,

qcs({χf |
∑
j

v
cs,f

(j)
χ

= 1}f∈cs) ≥ Qs · zcs (6)

τcs({ρf
(j)
χ
, χf |

∑
j

v
cs,f

(j)
χf

= 1}f∈cs) · zcs≤Ts . (7)

• Complying with the resource budget. We also need con-
ventional capacity constraints, i.e., the near-RT RIC resource
budget B must not be exceeded:∑

f∈F

∑
χ∈X

∑
j

ρ
f
(j)
χ ,k

≤ Bk, ∀k∈K . (8)

• Avoid service disruption. It is critical to account for the
cost incurred by the system whenever OREO determines a new
configuration for an existing service s. Let Ŝ = {ŝ} denote
the set of services that are already deployed, and cŝ capture
their service configuration. Accordingly, the binary parameter
ẑcŝ takes 1 if configuration cŝ of service ŝ is implemented,
and 0 otherwise. Now, given an xApp instance f

(j)
χ , we let

v̂
cŝ,f

(j)
χ

indicate whether service configuration cŝ is using f (j)χ ,
and ρ̂

f
(j)
χ

denote the vector indicating its current resource
allocation.

To ensure continuity for a service s∈Ŝ∩S, both the xApps
required by {cŝ | ẑcŝ}ŝ∈Ŝ∩S and by {cs | zcs}s∈Ŝ∩S have to co-
exist before (i) turning off the relative currently implemented,
but no longer required, xApps, and (ii) instantiating the
remaining functions required by the residual services in S. We
then define F1 as the set of xApps required by the existing
services that should not be deactivated:

F1 = {f (j)χ |
∑
cŝ∈Cŝ

v̂
cŝ,f

(j)
χ

= 1}f∈F, χf∈Xf , j, ŝ∈Ŝ∩S .

Similarly, let F2 be the set of xApps required in the last
defined near-RT RIC’s setting for the services whose operation

must not be disrupted. Then, to avoid service disruptions, we
must have:∑

f
(j)
χ ∈F1\F2

ρ̂
f
(j)
χ ,k

+
∑

f
(j)
χ ∈F2

ρ
f
(j)
χ ,k

≤Bk, ∀k∈K (9)

where F1\F2={f (j)χ | f (j)χ ∈F1∧f (j)χ /∈F2}.
• Objective function. The xDeSh problem aims to define

an xApp selection and resource allocation policy that (i)
maximizes the number of offered services based on their
priority levels, and (ii) minimizes the near-RT RIC resource
consumption. Accordingly, we describe the problem objective
function as:

Ψ(z,v,ρ)=
∑
s∈S

∑
cs∈Cs

zcs ps−
1

K

∑
f∈F

∑
χ∈Xf

∑
j

∑
k≤K

ρ
f
(j)
χ ,k

Bk

where the decision variables (see Table I) have been vector-
ized, and the 1/K factor prevents service rejection for the
sake of resource savings. The xDeSh problem can then be
formulated as:

xApp Deployment and Sharing (xDeSh) Problem
max
z,v,ρ

Ψ(z,v,ρ)

s.t. (2), (3), (4), (5), (6), (7), (8), (9)

zcs ∈ {0, 1} ∀s ∈ S, cs ∈ Cs
v
cs,f

(j)
χf

∈ {0, 1} ∀cs ∈ Cs, f ∈ F , χf ∈ Xf , j

ρ
f
(j)
χ ,k

∈ [0, Bk] ∀k ∈ K, f ∈ F , χf ∈ Xf , j

Proposition 1. The xDeSh problem is NP-hard.

Proof. We show that any instance of the well-known NP-
hard multi-commodity facility location problem (FLP) can be
reduced to an instance of the xDeSh problem. To this end,
we first recall that FLP aims to determine (i) the optimal
location for deploying facilities, and (ii) the commodities that
each facility offers to fulfill the consumers’ requests while
minimizing construction costs [24]. We then focus on a sim-
plified version of the xDeSh problem where each service can
have multiple configurations, but each configuration consists of
a single function (|{f}f∈Cs |=1, ∀s∈S, cs∈Cs). We disregard
the ability to activate functions with different complexity fac-
tors (|Xf |=1, ∀f∈F) and assume that the minimum resource
allocation for functions to meet the target service performance
is known. Also, we neglect reconfiguration costs.

The following mapping can then be defined between the
entities in the multi-commodity FLP and the reduced xDeSh
problem: (i) facility deployment locations correspond to func-
tions; (ii) commodities available at facilities correspond to the
services that functions can provide; (iii) customers are the
MNOs; (iv) the construction cost corresponds to the function
deployment cost. By further observing that the above reduction
can be obtained in polynomial time, the thesis follows. ■

IV. SOLVING THE XDESH PROBLEM

Motivated by Proposition 1 above, we propose an efficient
iterative heuristic to solve the problem in Sec. III-B. We
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outline such solution in Sec. IV-A, and then detail each of
its building blocks, namely,

(i) a Lagrangian relaxation of the original problem and the
decoupling method we adopt to reduce its complexity
(Sec. IV-B);

(ii) the pruning technique we apply to reduce the solu-
tion space (i.e., further reduce the solution complexity)
(Sec. IV-C);

(iii) an algorithm to ensure that the obtained solution is
feasible (Sec. IV-D), and, finally,

(iv) a subgradient method for updating the Langrange multi-
pliers (Sec. IV-E).

As we introduce each stage of the heuristic solution, we also
analyze its computational complexity (Sec. IV-F). We remark
that our solution algorithm is executed in the OREO engine,
introduced in Sec. II.

A. Overview of the algorithmic solution

In the proof of Prop. 1, we underlined the similarity
between the xDeSh problem and the FLP. Inspired by existing
efficient FLP solvers [25]–[27], we design our algorithmic
solution adopting an iterative, two-stage approach. As illus-
trated in Fig. 4, our solution framework first leverages the
Lagrangian Relaxation (LR) method, a relaxation technique
that incorporates the effect of the constraints that entail the
problem’s complexity into the objective function. To enforce
these constraints, the method introduces penalty terms, i.e.,
Lagrange multipliers. However, this approach may provide a
solution to the xDeSh problem that is infeasible.

To solve this issue, we combine the LR method with
an algorithm capable of identifying the violated constraints
and making adjustments to the relaxed solution. Importantly,
the feasible and infeasible solutions that we get represent,
respectively, the lower and upper bounds on the optimal
solution. To obtain increasingly tighter bounds, we leverage
the subgradient method – a robust technique that provides a
policy for progressively updating the Lagrangian multipliers.

The above solution process is repeated until one of the
three stopping criteria is met. The first criterion terminates
the process when the LR and the obtained solutions differ
by less than a given threshold, ∆. Subsequently, the iterative
process is stopped if the step size, determining the size of
updates to the Lagrangian multipliers through the subgradient
method, drops below a designated threshold Γ. Indeed, the step
size is initially set to large values to facilitate rapid updates
and then halved when the iterative process fails to improve
the solution for N iterations, aiming to refine and stabilize
the overall process. The third stopping criterion finally sets a
predefined maximum number of overall iterations, Λ.

B. Problem relaxation and decoupling

To apply the LR to the xDeSh problem, we note that
constraints (3), (6), and (7) entangle the service configuration

Lagrangian Relaxation problem
and decoupling

LR1 LR2

LR solution

Ensuring feasibility
xAppSelection()

ServiceQualityAdjustment()
ServiceLatencyAdjustment()

xDeSh feasible solution

No Best
feasibile
solution

Lagrangian multipliers updating
(Subgradient method)

Yes

LR3

Fig. 4: The xDeSh problem is solved with an iterative algorithm that
alternates the Lagrangian relaxation and the subgradient method until
the set stopping criterion is met.

and the xApp selection subproblems. However, since the LR
deals with inequalities, we split constraint (3) into:∑

χ∈Xf

∑
j

v
cs,f

(j)
χ

≥zcs , ∀s∈S, cs∈Cs, f∈Vcs (10)

∑
χ∈Xf

∑
j

v
cs,f

(j)
χ

≤1, ∀s∈S, cs∈Cs, f∈Vcs . (11)

The two inequalities above indeed provide, respectively, a
lower and an upper bound on the number of xApps implement-
ing the same function for a given service configuration cs, and
they collapse into (3) for the selected configuration. Moreover,
we linearize (7), which links the configuration selection with
the relative expected response latency by adopting the big-
M linearization for each service s implemented according to
configuration cs:

τcs({ρf
(j)
χ

|
∑
j

v
cs,f

(j)
χf

=1}f∈cs)−Ts≤M(1−zcs) . (12)

We relax constraints (10), (6) and (12) by introduc-
ing, respectively, the non-negative Lagrangian penalty terms
β={βcs,f}s,cs,f , γ={γcs}s,cs , and δ={δcs}s,cs , which leads
to the below LR formulation.

xDeSh Lagrangian Relaxation (LR) Problem
max
z,v,ρ

ΨL(z,v,ρ,β,γ, δ)

s.t. (2), (4), (5), (8), (9), (11)

zcs ∈ {0, 1} ∀s ∈ S, cs ∈ Cs
v
cs,f

(j)
χf

∈ {0, 1} ∀cs ∈ Cs, f ∈ F , χf ∈ Xf , j

ρ
f
(j)
χ ,k

∈ [0, Bk] ∀k ∈ K, f ∈ F , χf ∈ Xf , j

In the above expression, the Lagrangian function ΨL is
defined as:



ΨL(z,v,ρ,β,γ, δ)=ΨL,1+ΨL,2+ΨL,3

ΨL,1(z,β,γ, δ)=
∑

cs
zcs(ps−γcsQs−Mδcs−∑

f∈cs
βcs,f )

ΨL,2(v,ρ,β,γ,δ)=
∑

cs,f
(j)
χ ∈cs

βcs,fvcs,f(j)
χ

+
∑

cs
γcsqcs−

1
K

∑
f
(j)
χ ,k∈Kq

ρ
f
(j)
χ ,k

Bk

ΨL,3(ρ,β,γ,δ)=−
∑

cs
δcsτcs− 1

K

∑
f,χ,j,k∈Kτ

ρ
f
(j)
χ ,k

Bk
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where we recall that Kτ and Kq denote, respectively, the set
of computing and storage resources.

Conveniently, the LR problem defined above can be easily
decomposed into three (rather than two, as in [1]) independent
subproblems by applying primal decomposition.

To enable LR primal decomposition, we first apply (8) to
Kq and Kτ : ∑

f∈F

∑
χ∈X

∑
j

ρ
f
(j)
χ ,k

≤ Bk, ∀k∈Kq , (13a)∑
f∈F

∑
χ∈X

∑
j

ρ
f
(j)
χ ,k

≤ Bk, ∀k∈Kτ . (13b)

Similarly, we also split (9) into:∑
f
(j)
χ ∈F1\F2

ρ̂
f
(j)
χ ,k

+
∑

f
(j)
χ ∈F2

ρ
f
(j)
χ ,k

≤Bk, ∀k∈Kq , (14a)

∑
f
(j)
χ ∈F1\F2

ρ̂
f
(j)
χ ,k

+
∑

f
(j)
χ ∈F2

ρ
f
(j)
χ ,k

≤Bk, ∀k∈Kτ . (14b)

Hence, we derive the following three independent LR sub-
problems.

LR1 problem. LR1 tackles the problem of service configu-
ration selection, breaking it down into a set of “0-1 knapsack”
problems, each specifically designed for an individual service
within S. The objective for each knapsack problem is to
identify the service configuration in Cs that maximizes the
expression ΨL,1.

LR1 Problem
max
z

ΨL,1(z,β,γ, δ)

s.t. (2)

zcs ∈ {0, 1} ∀s ∈ S, cs ∈ Cs

Despite the solution space size (namely, |S||Cs|), solving
LR1 is straightforward due to the uniqueness of the selectable
configuration.

LR2 problem. LR2 deals with xApp instantiation and
the concurrent allocation of storage and memory space. This
process is a variant of the single-layer incapacitated FLP,
where xApps take the place of facilities and service configu-
rations stand in for customers. In accordance with ΨL,2, the
xApps are associated with instantiation and association costs
measured by, respectively, ρ and β. The offered quality qcs
represents the degree of satisfaction of service configuration
cs with the associated xApps. The primary objective in LR2
is to determine the optimal set of xApps for instantiation,
maximizing the trade-off between instantiation and association
costs while considering the quality provided to the services
qcs .

LR2 Problem
max
v,ρ

ΨL,2(v,ρ,β,γ, δ)

s.t. (4), (5), (11), (13a), (14a)

v
cs,f

(j)
χf

∈ {0, 1} ∀cs ∈ Cs, f ∈ F , χf ∈ Xf , j

ρ
f
(j)
χ ,k

∈ [0, Bk] ∀k ∈ Kq, f ∈ F , χf ∈ Xf , j

The dimensionality of LR2 is determined by the product of
the number of configurations, which are |S| by incorporating
the pruning technique introduced in IV-C, and the number of
functions |F|. Although the evaluation of service quality qcs
introduces non-linearity, LR2 can be optimally solved in many
practical cases within a reasonable time by linearizing the
computation of offered quality and leveraging standard solvers,
e.g., Gurobi and CPLEX. Alternatively, heuristic methods can
be applied to solve LR2 in extensive scenarios. The approach
proposed in [28] is notable for its swift execution. The
heuristic algorithm systematically eliminates xApps from the
solution, assessing potential savings through their exclusion.
This process iterates until all constraints are met, or there
are no more xApps whose deactivation improves the objective
function. The devised heuristic approach, as demonstrated in
our numerical evaluation, shows an average gap of approxi-
mately 3% compared to the optimum. Its complexity is in the
order of O(|F||Vcs |), due to the need to evaluate the benefit
of deactivating each xApp while keeping the others.

LR3 problem. Finally, LR3 focuses on the allocation of
computing resources for the xApps execution.

LR3 Problem
max
ρ

ΨL,3(ρ,β,γ, δ)

s.t. (13b), (14b)

ρ
f
(j)
χ ,k

∈ [0, Bk] ∀k ∈ Kτ , f ∈ F , χf ∈ Xf , j

LR3, whose complexity scales with the number of xApps
(i.e., it is O(|F|)), is convex and efficiently solvable using
standard solvers.

The overall LR solution, also referred to as the relaxed
solution, is obtained by combining the solutions of LR1,
LR2 and LR3 subproblems. We can then prove the following
proposition:

Proposition 2. The solution provided for LR1, LR2 and
LR3 problems provides a solution to the xDeSh Lagrangian
Relaxation problem with an approximation ratio of 3.

Proof. Heuristics with known approximation ratio exist for the
knapsack ((1−ϵ) if the items size is within ϵ of the knapsack
capacity [29]) and the uncapacitated FLP (3 using Primal-
Dual methods [30]). Consequently, considering that (i) the
LR solution is obtained by combining the LR1, LR2 and
LR3 solutions, (ii) each service can have only one active
configuration at a time (i.e., ϵ = 1 in the knapsack), and (iii)
neglecting the demand for service quality, the thesis holds. ■

C. Variable pruning of the problem space

To further reduce the complexity of the LR solution, we
incorporate relaxation and decoupling methods along with a
pruning technique that decreases the dimensionality of LR2
and LR3 problems. We do so by identifying variables and
constraints that do not contribute to the optimization process
but rather add unnecessary complexity. As a result, we reduce
the time complexity of the solution, without compromising its
quality. In more detail, we apply pruning as follows:
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Algorithm 1 Ensuring feasibility
Input: {z̄, v̄, ρ̄} ▷ Relaxed solution.
Output: {ẑ, v̂, ρ̂} ▷ Feasible solution.

1: ẑ ← z̄ ▷ Accept relaxed service configuration choice.
2: if Eq. (10) is not respected for any service s ∈ S then
3: v̂

cs,f
(j)
χ
← xAppSelection algorithm ▷ Fix the relaxed xApp

selection.
4: if Eq. (6) is not respected for any service s ∈ S then
5: v̂

cs,f
(j)
χ
← ServiceQualityAdjustment ▷ Increase the

service quality by adjusting functions complexity.
6: if Eq. (12) is not respected for any service s ∈ S then
7: ρ̂

f
(j)
χ ,cpu

← ServiceLatencyAdjustment ▷ Reduce the
service response latency by adjusting xApp CPU allocation.

8: while Eq. (8) or (9) are not respected do
9: s∗ ← the lowest-priority implemented service with the highest

deployment cost
10: ẑcs∗ ← 0 ▷ Deactivate service s̃
11: v̂cs∗ ,· ← 0 ▷ Turn-off the xApps utilised by s∗, only

Algorithm 2 xAppSelection
Input: {z̄, v̄, ρ̄} ▷ Relaxed solution.
Input: {cs} ▷ The service configuration at issue.
Output: {ẑ, v̂, ρ̂} ▷ Solution that satisfies Eq. (10) .

1: for every not provided f ∈ cs do
2: if ∃ an xApp providing f with the semantic required by cs then
3: (χ∗, j∗) ← Identify the xApp with minimum load.
4: else if ∃ an xApp providing f then
5: (χ∗, j∗) ← Identify the xApp that can be shared at minimum

cost.
6: else
7: (χ∗, j∗) ← a new xApp providing f .
8: v̂

cs,f
j∗
χ∗ )
← 1 ▷ Share/instantiate the xApp (f, χ∗, j∗)

• Service configuration space pruning: the LR2 search space
can be effectively narrowed down by disregarding service
configurations that were rejected in the LR1 solution, along
with the exclusion of the xApps that are associated with such
dropped configurations only. Throughout the LR2 resolution
process, we deliberately exclude the potential association of
xApps with non-deployed configurations, in line with (3). By
doing so, the LR2 subproblem handles at most |S| service
configurations.

• xApp space pruning: upon identifying the xApps accepted
for implementation, a reduction in the size of LR3 becomes
also feasible. Specifically, we reserve computational resources
to the xApps that are implemented in the LR2 solution.

D. Ensuring feasibility

As mentioned before, the solution of the LR1, LR2 and LR3
problems provide a solution to the xDeSh LR problem, which
however may be unfeasible. We thus propose an Ensuring
feasibility multi-stage algorithm to derive a feasible solution at
a later step. As depicted in Fig. 4, upon receiving the relaxed
solution, this algorithm identifies and properly rectifies any
violation of the relaxed constraints (6), (10), and (12). The
performed steps are reported in Alg. 1 and detailed below.

1) Ensuring a compliant xApp selection. The first stage of
the Ensuring feasibility algorithm assesses the compliance of
the LR solution with constraint (10). This involves verifying
for each chosen service configuration if the xApps selected
by the relaxed solution can meet the configuration functional

Algorithm 3 ServiceQualityAdjustment
Input: {z̄, v̄, ρ̄} ▷ Relaxed solution.
Input: {cs} ▷ The service configuration at issue.
Output: {ẑ, v̂, ρ̂} ▷ Solution that satisfies Eq. 6

1: while Eq. 6 not respected for s and improvements are available do
2: for each complexity factor increase for the xApps within cs do
3: Compute the expected quality improvement.
4: Compute the expected resource cost increase.
5: (f̃ , χ̃) ← Identify the xApp complexity improvement that leads the

greatest service quality boost at minimum cost.
6: if Eq. (6) has been met then
7: for every change in cs configuration (f, χ)→ (f̃ , χ̃) do
8: j̃ ← 1. ▷ Identify an existing or a new xApp instance
9: v̂

cs,f̃
(j̃)
χ̃

← 1 ▷ Share/instantiate the xApp (f, χ̃, j̃)

10: else
11: Remove service s.

requirements (Alg. 1, Line 2). If this condition is not met, the
xAppSelection algorithm (Alg. 2) selects and adds to the LR
solution the missing xApps (Alg. 1, Line 3). The xAppSelection
algorithm evaluates whether the xApps already included in the
solution can be shared. Precisely, sharing is preferred when
the xApp performs the function with the same semantic as
the concerned service, thereby not impacting the xApp load
(Alg. 2, Lines 2-3). The same occurs when the additional
computing resources needed to handle the extra xApp load
are less than the resources required for a new xApp instance
(Alg. 2, Lines 4-5). When multiple xApps meet a sharing
criteria, the one with the lowest load is reasonably selected.
Otherwise, a new xApp is istantiated (Alg. 2, Lines 6-7).
Since the missing xApps for a service are O(|Vcs |) (Alg. 2,
Line 2), the complexity of the stage ensuring a compliant xApp
selection is O(|S||Vcs |).

2) Meeting service quality requirements. The second stage
of the Ensuring feasibility algorithm is dedicated to achiev-
ing the service quality targets. If any service fails to meet
this criterion (Eq. (6)), our strategy incorporates the service
configuration selection provided by the relaxed solution while
simultaneously improving the complexity (hence, the output
quality) with which the interested functions are deployed
(Alg. 1, Lines 4-5).

The ServiceQualityAdjustment method (Alg. 3) is designed
to achieve the specified task. The latter iterates through each
function within the considered configuration, assessing any
potential change in the deployment complexity level, until
the service quality requirement is satisfied (Alg. 3, Lines 1-
2). The potential complexity increments are hence O(|Vcs |).
For every complexity increase, the algorithm evaluates the
gain in the expected service quality and the associated cost
in resources (Alg. 3, Lines 3-4). Subsequently, the algorithm
selects the xApp that offers the maximum enhancement in
service quality at the minimal cost (Alg. 3, Line 5). Since
the maximum number of interations of this first stage of the
ServiceQualityAdjustment is O(|Vcs |), the involved computa-
tional effort scales with O(|S||Vcs |2). Once defined the new
service deployment settings, the possible sharing of the xApp
is assessed using the procedure outlined in Alg. 2 (Alg. 3,
Lines 6-9). If the service quality requirement cannot be met,
the service is dropped (Alg. 3, Lines 10-11).
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Algorithm 4 ServiceLatencyAdjustment
Input: {z̄, v̄, ρ̄} ▷ Relaxed solution.
Input: {cs} ▷ The service configuration at issue.
Output: {ẑ, v̂, ρ̂} ▷ Solution that satisfies Eq. (12)

1: while Eq. (12) not respected for s and improvements are available do
2: for each xApp within cs do
3: Compute the expected service response latency reduction by

increasing by δ the xApp CPU allocation.
4: (f̃ , χ̃) ← Identify the xApp CPU allocation increase that leads the

greatest service response latency reduction.
5: if Eq. (12) has been met then
6: Update ρ̄.
7: else
8: Remove service s.

Ultimately, after confirming adequate quality for all ser-
vices, it is evaluated whether of not if it is feasible to
reduce the complexity of any function, thereby decreasing
resource demand without violating the quality constraints of
any service. If, in this process, the quality constraints of all
services continue to be satisfied, the complexity reduction is
applied (pseudocode is omitted for brevity).

3) Meeting service response latency targets. A similar
approach is undertaken for service response latency. Specifi-
cally, the method ServiceLatencyAdjustment (Alg. 4) increases
the CPU allocation for each xApp contributing to a service
that fails to meet its response latency target. CPU allocation
is increased first for the xApps for which the smallest CPU
increase brings the best latency improvement (Alg. 4, Lines 2-
4). The service is dropped whenever its response latency
requirement cannot be met (Alg. 4, Lines 7-8). The complexity
of this step of the above heuristic is O(|S||Vcs |). This differs
from what discussed for the service quality, as the maximum
number of iterations in the algorithm is restricted by the
considered CPU allocation increment i.e., it is a constant.

4) Meeting the resource budget. The previous steps
identify the xApps needed for the deployment of the requested
services and adjust the compute resource allocation accord-
ingly. However, the constraints (8)–(9) have to be fulfilled as
well, i.e., it is imperative to verify the feasibility of the current
solution and drop service requests as needed. The services to
be discarded (if any) are those with the lowest priority and the
highest deployment cost (Alg. 1, Lines 9-11). Evaluating the
deployment cost for every service has complexity O(|S||Vcs |).
This iterative procedure is repeated until the available budget
is met by all resource types (Alg. 1, Line 8).

5) The complexity of Ensuring feasibility. Finally, the
feasibility algorithm incurs a computational complexity that
scales with O(|S||Vcs |) + O(|S||Vcs |2) + O(|S||Vcs |) +
O(|S||Vcs |)=O(|S||Vcs |2) as its stages are sequentially in-
dependently executed The highest-complexity stage of the
Ensuring feasibility algorithm is the ServiceQualityAdjustment
method, which therefore determines the overall complexity of
the Ensuring feasibility algorithm.

E. The subgradient method

To penalize the violations of the relaxed constraints, the
values of the Lagrangian multipliers can be determined so that
the extent of such violations is minimized. The subgradient

method is a viable and computationally efficient approach to
solving this [31]. Specifically, it is an iterative optimization
algorithm that generalizes the gradient descent algorithm for
non-differentiable functions. It consists in iteratively updating
the Lagrange multipliers in the direction of the subgradients
of the LR problem objective function with respect to the
Lagrange multipliers. The procedure’s computation burden is
proportional to the cardinality of the Lagrangian multipliers,
which in our case are O(|S||Cs||Vcs |). Importantly, the sub-
gradient method is effective with non-smooth and non-convex
functions [31], as is the case of the xDeSh problem.

F. Overall complexity of the heuristic algorithm

We now provide a summary of the complexity of the
different stages composing the proposed heuristic and evaluate
that of the overall OREO algorithmic framework. In our
analysis, we disregard inherently bounded parameters such as
the maximum number of implementable instances of an xApp,
or the available complexity levels with which a RAN function
can be implemented.

First, as detailed in IV-B, LR2 is the Lagrangian subproblem
that requires the highest computational effort, and its complex-
ity scales as
O(|F||Vcs |) when the heuristic approach of [28] is utilized.

Second, the complexity of the ensuring feasibility algorithm
is equivalent to that of its most complicated step, which
is O(|S||Vcs |2). This effort is required to ensure that all
services are provided with sufficiently high quality. Finally, the
complexity of the subgradient method, used for updating the
Lagrange multipliers, is O(|S||Cs||Vcs |). Reasonably assuming
that the number of configurations available for a service |Cs| is
less than the functions involved in a configuration, i.e., |Vcs |,
then this method’s complexity scales down to O(|S||Vcs |2).

Putting all the above together, the complexity of the
proposed heuristic for solving the xDeSh problem can be
expressed as O(|F||Vcs |) + O(|S||Vcs |2) + O(|S||Vcs |2) =
O(|F||Vcs |+|S||Vcs |2).

V. NUMERICAL EVALUATION

We first evaluate OREO numerically, employing a custom-
built Python simulator to assess its efficacy at scale. (An
experimental validation is presented in Sec. VI).

Our numerical tests involve simulating MNOs that generate
requests for a specific set of Ns services. These service
requests are forwarded to the non-RT RIC, where OREO
strategically selects the best configuration from a set of |Cs|
potential ones. Each configuration entails a maximum of |Vcs |
RAN functions from the pool of |F| available functions. Each
function is deployable at three distinct levels of complexity
at most. We evaluate four scenarios with varying scales (as
outlined in Table II) representing increasingly complex xDeSh
problem instances to be solved. These scenarios serve as
synthetic, yet representative, benchmarks for assessing the
nominal capability and scalability of OREO. Unless otherwise
stated, results represent average values across 200 simulation
runs with error bars indicating the standard deviation.

Benchmarks. We compare OREO against three alternatives:
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TABLE II: Numerical test scenarios

Scenario Ns |Cs| |F| |Vcs |

Small (S) 4 2 4 3
Medium (M) 8 3 8 4

Large (L) 12 4 12 5
Extra Large (XL) 16 5 16 6

• The “Optimal” policy, which utilizes Gurobi to optimally
solve the xDeSh problem;

• OREO-HC [1], the preliminary framework we presented
in our conference paper, which solves the xDeSh problem
by leveraging on Lagrangian relaxation and less meticu-
lous decoupling methods, without applying any pruning
technique. In this section, we refer to this benchmark
as OREO-HC to highlight the higher complexity (HC)
characterizing such an initial version of the framework
relatively to the one we propose in this paper;

• OrchestRAN [11], a state-of-the-art O-RAN orchestrator
that is the closest in terms of goals and underlying
principles to OREO. The core function of OrchestRAN,
similar to OREO’s, is to determine the optimal selection
of xApps to deploy according to high-level objectives
while meeting desired latency requirements.

OrchestRAN does not model services as compositions of
interconnected xApps. Hence, to support these cases, we let
OrchestRAN deploy each services as a single xApp.

Overall performance. Table III compares the performance
of each approach across all scenarios introduced in Table II. It
reports the mean objective value (ψ̄), worst-case performance
relative to the Optimal policy (α), 90% confidence interval
(0.9α), and average performance ratio (ᾱ). Additionally, the
execution time (t) for each solution is provided, along with its
ratio to the Optimal solver’s execution time (S). Importantly, in
Large (L) and Extra Large (XL) scenarios (where optimization
variables exceed 104), the Optimal policy cannot find a solu-
tion within a reasonable time frame. This makes performance
comparisons with heuristic methods infeasible (indicated as “–
” in the table). The same limitation applies to OREO-HC [1]
for XL scenarios.

OREO consistently delivers solutions within (at least) 0.66
of the optimum across all tested scenarios but, more im-
portantly, the estimated performance ratio increases to 0.97
within a 90% confidence interval. This narrow confidence
interval demonstrates OREO’s ability to maintain performance
close to its mean, which consistently exceeds 0.99 in the
tested scenarios. Furthermore, OREO’s performance remains
comparable to its preliminary version [1]. While the worst-
case approximation ratio experiences a 32% reduction, we
observe a minimal deterioration of only 2% within a 90%
confidence interval, all while reducing execution time between
9× and 48×, which enables scaling up to even larger scenarios
(e.g., XL). In contrast, OrchestRAN exhibits a significant
performance gap compared to the optimum. In the simplest
scenarios (S and M), OrchestRAN achieves an approximation
ratio that is, respectively, 83% and 14% worse than OREO.

Deployed services and xApps. We now gain more insights
on the performance achieved by each solution by examin-
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Fig. 5: Numerical results: Percentage of services (top) and
xApps (bottom) deployed by Optimal, OREO, and OrchestRAN.

ing the percentage of services and xApps they provide. In
Fig. 5(top), both the Optimal solution and OREO-HC [1]
successfully deploy all services across scenarios S to M.
Notably, OREO, a more agile version of OREO-HC [1],
barely sacrifices the number of deployed services. In contrast,
OrchestRAN exhibits a significant drop in service implemen-
tation, providing up to 14% fewer services than the optimum
in small and medium-sized scenarios.

One contributing factor is evident in Fig. 5(bottom), which
depicts the average number of xApps deployed. While OREO
deploys more services than OrchestRAN, it does so with a
lower number of xApp instances due to its superior xApp
sharing and resource allocation abilities. Specifically, OREO
instantiates an average of 17% fewer xApps (and up to 49.1%)
than OrchestRAN. It deploys 20.2% to 39.3% more xApps
than the Optimal solution, which leverages its xApps more
effectively to offer a similar number of services. Importantly,
however, the Optimal policy is very slow for medium scenarios
and becomes impractical in Large scenarios (and larger) due
to the problem’s increased complexity. The same holds for
OREO-HC in XL scenarios.

Near-RT RIC resource consumption. OREO’s ability to
share xApps across services significantly reduces resource
consumption at the near-RT RIC compared to its benchmark,
as detailed in Fig. 6. For instance, OREO saves 48.7% of
CPU resources compared to OrchestRAN, while still offering
a greater number of services. OREO, OREO-HC, and the
Optimal policies exhibit comparable resource consumption,
which scales with higher complexity scenarios. This highlights
that the goal of minimizing resource usage is effectively
balanced with other objectives within the xDeSh problem, such
as maximizing the number of services deployed.

Service requirements. OREO effectively scales xApp re-
sources based on the aggregated load of dependent services,
ensuring that their requirements are successfully met. This is
demonstrated in Fig. 7 and Fig. 8, which illustrate normalized
service response latency (i.e., the ratio of actual to target
service response latency) and normalized service quality across
scenarios (i.e., the ratio of actual to target service quality).
All solutions fulfill latency and quality targets, with average
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TABLE III: Performance metrics of OREO and its benchmarks: i) mean objective value (ψ̄); ii) worst-case performance (α), 90% confidence
interval (0.9α), and average performance ratio (ᾱ) relative to the Optimal policy; iii) orchestrator’s execution time (t) and its ratio to the
Optimal solver’s execution time (S)

OREO OREO-HC [1] OrchestRAN Opt.

ψ̄ α 0.9α ᾱ t S ψ̄ α 0.9α ᾱ t S ψ̄ α 0.9α ᾱ t S t

S 0.972 0.66 0.97 0.99 0.12 0.35 0.987 0.97 0.99 0.99 5.76 16.94 0.828 0.11 0.62 0.70 0.01 0.03 0.34
M 0.976 0.83 0.98 0.99 1.79 0.02 0.982 0.98 0.99 0.99 16.34 0.17 0.914 0.71 0.90 0.92 0.22 0.002 95.15
L 0.957 − − − 15.93 − 0.941 − − − 226.31 − 0.833 − − − 5.12 − −

XL 0.837 − − − 43.81 − − − − − − − 0.674 − − − 146.12 − −
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Fig. 6: Numerical results: CPU (left), RAM (center), and Disk (right) resources used by Optimal, OREO, and OrchestRAN.
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Fig. 7: Normalized response latency performance of RAN services
offered by Optimal, OREO, and OrchestRAN.
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Fig. 8: Normalized service quality performance of RAN services
offered by Optimal, OREO, and OrchestRAN.

latency-to-target ratios below 1 and average quality-to-target
ratios above 1. Importantly, OREO achieves this with sig-
nificantly lower resource consumption (as shown in Fig. 6).
Further, OREO delivers superior service quality compared
to OrchestRAN (2.1% improvement). This gain stems from
OREO’s ability to optimize xApp complexity levels to match
the most demanding service among those sharing the xApp.

VI. EXPERIMENTAL VALIDATION

In this section, we first detail the experimental prototype
of OREO on the Colosseum network emulator and outline
the setup of the experiments (Sec. VI-A). Then we validate
OREO through practical experiments that involve real-world
RAN services and xApps (Sec. VI-B).

A. Experimental setup

Prototype on Colosseum. We developed a proof-of-concept
implementation of the OREO framework (see Fig. 1) using

the Colosseum wireless network emulator [9]. Colosseum
enables the emulation of diverse radio and computing sce-
narios, providing 128 Standard Radio Nodes (SRNs). These
SRNs are x86-64 servers equipped with Ettus X310 radio
frontends, interconnected through the Massive Channel Em-
ulator (MCHEM). To create an O-RAN 5G network, we em-
ployed the SCOPE framework [32], an open-source platform
specifically tailored for prototyping NextG systems based on
srsRAN technology [33]. In our experimental setup, one SRN
acts as the base station, utilizing the srsRAN CU/DU/RU for
radio functions. This node also hosts the SMO framework
and RIC components. Within the non-RT RIC, the OREO
rApp (or its benchmark counterpart) receives service requests
and optimizes xApp configurations and resource allocations
for efficient service delivery. The SMO’s xApp lifecycle
manager then directs the instantiation of the selected xApps as
Docker containers within the near-RT RIC. Although OREO is
functionally standard-compliant, for the purpose of evaluation,
we were unable to implement a fully standard-compliant
deployment. Indeed, since some interfaces (e.g., O2 and HMI)
are still in the process of standardization, we opted for a
pragmatic approach that balances current capabilities with
the evolving standards. Nonetheless, we are confident in the
robustness and relevance of our results.

Our test RAN supports three predefined slices: eMBB for
high-speed traffic (e.g., HD video), Machine-type Communica-
tion (MTC) for sensors and actuators, and URLLC for critical,
low-latency applications. Each slice has a maximum capacity
of 5 users, and user assignment to slices is static based on
traffic type. User arrivals and departures in each slice follow
a Poisson distribution with a rate of 0.05. We employ the
MGEN tool1 to model data transmission from the base station.
Traffic flows are based on public datasets from a major Italian
MNO, namely, Telecom Italia (TIM) in Milan, Italy [34] and
they vary per slice: eMBB slices have a maximum load of
6.72 Mbps and a packet size of 1400 B; MTC slices have a
maximum load of 0.512 Mbps and a packet size of 80 B; and

1https://github.com/USNavalResearchLaboratory/mgen
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Fig. 9: Graph-based representation of the real-world RAN services
integrated into the O-RAN platform hosted in the Colosseum testbed.

URLLC slices have a maximum load of 1.2 Mbps and a packet
size of 200 B.

Finally, in our experiments we used a cell bandwidth of
5 MHz, which provides up to 25 Physical Resource Blocks
(PRBs), and the 0-dB path loss static scenario in the Colos-
seum emulator. Each SRN is equipped with 2× 12-core Intel
Xeon E5-2650 v4 processors and 128 GB of DDR4 memory.
However, we limited xApp execution to 2 cores.

RAN services and service configurations. We designed
three real-world RAN services (depicted in Fig. 9):

• Traffic Forecasting (TF): Predicts future user traffic loads
for proactive RAN control. This service has a single
configuration with a Traffic Predictor (TP) function.

• Network Slicing (NS): Dynamically allocates radio re-
sources (PRBs) across slices. It offers two configurations:
(i) NSP-only, which relies on near-RT RIC telemetry data,
and (ii) NSP + TP, which incorporates a TP function
to anticipate future traffic for more informed resource
allocation.

• Anomaly Detection (AD): Monitors base station traffic
to detect anomalies (security threats, failures, etc.). It has
a single configuration with a Traffic Predictor (TP) fol-
lowed by an Anomaly Detection Policy (ADP) function.

O-RAN functions and xApps. As depicted in Fig. 9,
the aforementioned services can leverage three functions: the
Traffic Predictor (TP), the Network Slicing Policy (NSP), and
the Anomaly Detection Policy (ADP) functions, detailed in
Table IV. TP consists of a Long Short-Term Memory (LSTM)
model forecasting future traffic load based on past traffic
samples. NSP uses an on-policy Reinforcement Learning
(RL)-based slicing policy derived from [13] to dynamically
allocate PRB to network slices. Based on traffic predictions,
ADP detects network anomalies when the actual and expected
behaviors of the traffic deviate significantly (see [35]). We
trained each xApp either online, such as in the case of DRL-
based NSP, or through datasets collected in Colosseum.

These functions can be combined to offer various RAN
services. Table IV presents the xApps implementing these
functions, along with their respective profiles. Importantly,
when measuring disk utilization, we focus exclusively on the
runtime occupation of the Docker container’s writable layer.
This approach excludes the disk space used by the Docker
image itself, as the image is a prerequisite for building the
Near-RT RIC’s xApp catalog, regardless of whether a specific
xApp is actively instantiated or not.
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Fig. 10: Test scenario #1: service configuration under OREO (left)
and OrchestRAN (right).
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Fig. 11: Test scenario #1: normalized service response latency of
OREO (green) and OrchestRAN (blue).

B. Experimental results

We consider three distinct scenarios, detailed in Table V.
Each scenario presents MNOs requesting varying service sets
with diverse target quality and latency requirements. Since
decision updates are needed every second, the arrival rate (λ)
for each xApp is set to 1.

Test scenario #1. In this scenario, the MNO requests the
NS service (quality target: 0.5, latency: 75 ms) and the AD
service (quality target: 4.0, latency: 30 ms). Fig. 10 visually
compares OREO’s and OrchestRAN’s configuration decisions.
Both frameworks select the highest complexity TP function
(χH ) for the AD service to meet its stringent quality target.
However, OREO and OrchestRAN differ in NS configuration.
OREO’s holistic view of RAN services enables it to share the
TP function, while OrchestRAN’s approach necessitates two
separate TP xApps.

This sharing strategy directly translates to resource savings,
as shown in Table VI. Specifically, OREO exhibits a 66.7%
reduction in computational resource allocation compared to
OrchestRAN. This stems from OREO’s ability to avoid over-
provisioning and dynamically scale xApp resources based on
service load and requirements. Additionally, OREO reduces
RAM usage by 20.4% due to deploying fewer xApps. Disk
space savings are also observed, though less significant.

Concerning service requirements, on the one hand, Fig. 11
illustrates the average value and the 95% confidence interval
of the normalized (i.e., the ratio of actual to target) service
response latency. Both OREO and its benchmark meet the
service requirements. However, OrchestRAN struggles to bal-
ance meeting service requirements and resource consumption.
Compared to OrchestRAN, OREO instead achieves a service
latency on average 164% closer to its target, further highlight-
ing its effectiveness.

On the other hand, Fig. 12 presents the average performance
trend and the corresponding confidence intervals of the KPI
for each of the 3 slices, respectively. We focus on downlink
throughput, physical Transport Block (TB) count, and down-
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TABLE IV: Description of the considered xApp functions: i) no. of available complexity levels and their design choice, ii) provided trade-offs,
iii) storage (RAM, Disk) resource requirements, and iv) provided performance scores

Function Complexity levels Trade-offs (Accuracy vs.
Data/Cycle)

Resource (RAM, Disk)
requirements

Performance score

Traffic Predictor (TP) 2 options (24 - 30 Input
samples; 2 - 3 LSTM lay-
ers; 79 - 90 Hidden layer
size)

Higher complexity = Bet-
ter accuracy, less data pro-
cessed per CPU cycle

180.6 - 181.1 MiB RAM,
4.46 kB Disk

Accuracy: 3.3 - 4.2 nor-
malized MSE

Network Slicing Policy (NSP) 2 options (Neural network
layers)

- 524.1 - 537.1 MiB RAM,
79.9 kB Disk

Reward: 0.0 - 0.18 (stan-
dalone), 0.59 - 0.80 (low-
complexity TP), 0.67-1.00
(high-complexity TP)

Anomaly Detection Policy (ADP) 1 option Not applicable 61.5 MiB RAM, 4.3 kB
Disk

Score: same as paired TP
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Fig. 12: Test scenario #1: KPI evolution for the eMBB (left), MTC (center) and URLLC (right) slices under OREO (blue, solid) and
OrchestRAN (orange, dashed).

TABLE V: Experimental test scenarios and requested service targets

Service
TF NS AD

Scenario

#1 − Qs : 0.5 Qs : 4.0
− Ts : 75 ms Ts : 30 ms

#2 − Qs : 1.0 Qs : 4.0
− Ts : 100 ms Ts : 30 ms

#3 Qs : 4.0 Qs : 1.0 −
Ts : 50 ms Ts : 100 ms −

TABLE VI: Experimental results: resource utilization

Scenario Orchestrator CPU [%] RAM [MiB] Disk [kB]

#1 OREO 0.30 705.2 84.26
OrchestRAN 0.90 885.8 88.72

#2 OREO 0.45 718.2 84.36
OrchestRAN 1.00 899.3 88.82

#3 OREO 0.45 718.2 84.36
OrchestRAN 0.65 718.2 84.36

link buffer occupancy, following the methodology in [13].
OREO’s NSP function significantly improves performance for
eMBB and URLLC slices. eMBB users experience an 11.3%
increase in average throughput, while URLLC users benefit
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Fig. 13: Test scenario #1: physical resource blocks for the eMBB
slice with OREO (blue, solid) and OrchestRAN (orange, dashed).

Neetwork Slicing Policy (NSP) Traffic Predictor (TP)

Function

0%

20%

40%

60%

80%

100%

C
P

U
A

llo
ca

ti
on

[%
]

0.20 0.250.30 0.70

OREO OrchestRAN

Network Slicing (NS) Anomaly Detection (AD)

Service

0.0

0.2

0.4

0.6

0.8

1.0

S
er

vi
ce

re
sp

on
se

la
te

nc
y

no
rm

liz
ed

to
ta

rg
et

0.56 0.620.34 0.17

OREO OrchestRAN

Fig. 14: Test scenario #2: xApp CPU allocation (top) and normalized
service response latency (bottom) with OREO (green) and Orches-
tRAN (blue).

from a 13.1% reduction in buffer occupancy, leading to lower
queuing delays and latency. MTC slice performance remains
largely unchanged. Importantly, these service quality gains
are not due to changes in radio conditions, which are held
constant for both solutions. Instead, they directly result from
the NSP function’s ability to leverage more accurate traffic
forecasts provided by the TP function. Fig. 13 underlines this
effect: OREO’s NSP allocates more resources to the eMBB
slice than OrchestRAN, especially during the traffic surge
between 450 and 600 s. In summary, this result demonstrates
that OREO’s xApp sharing ability enables the use of higher-
complexity function configurations, leading to superior service
quality metrics without compromising resource efficiency.
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Test scenario #2. In the second scenario we tested, the
MNO requests a higher quality score (1.0) and a stricter
response latency target (100 ms) for the NS service, while the
AD service requirements remain unchanged.

To meet these requirements, OrchestRAN deploys the NSP
function at maximum complexity, differing from the configura-
tion selected in the first scenario. In contrast, OREO maintains
the service configuration shown in Fig. 10(left). Once again,
OREO exhibits superior resource efficiency in RAN service
deployment. As can be seen in Fig. 14 (top), it achieves
a 55% reduction in CPU budget and allocates 20.1% less
RAM compared to OrchestRAN (Table VI). These savings
result from OREO’s ability to share xApps between services
and precisely scale xApp resources to meet latency targets,
effectively avoiding over-provisioning (Fig. 14(bottom)).

Test scenario #3. In this case, the MNO requests the NS
and TF services, thus replacing the AD service from previous
scenarios. This change leads to both OREO and its competitor
deploying the same set of xApps (Fig. 15(left)). The xApp
chain consists of the TP and NSP functions, offering both TF
and NS services and allowing for sharing.

Despite the identical xApp deployment, OREO shows a
clear advantage in resource efficiency, especially in com-
putational resources. This is highlighted in Table VI and
Fig. 15(center), which illustrate the distribution of computa-
tional resources. Notably, OREO’s ability to dynamically scale
computational consumption based on target service latency
(Fig. 15(right)) results in a significant 30% reduction in CPU
usage.

VII. RELATED WORK

The O-RAN architecture facilitates the integration of net-
work intelligence and automation within the RAN through a
diverse range of third-party applications. Recently, significant
focus has been placed on developing near-real-time RIC
xApps [36], which serve various purposes such as analyzing,
predicting, controlling, and automating behaviors within O-
RAN networks. Examples of these xApps include those for
network traffic classification [37], [38], network load fore-
casting [39], [40], setting policies to define RAN slices [13],
[41], [42], and radio resources management [19], [43]. In this
context, it becomes of paramount importance to effectively
manage and orchestrate the RAN, as it is responsible for
overseeing network intelligence management [44].

A significant body of research addresses the traditional
challenges of RAN orchestration, offering strategies for op-
timizing energy consumption [45]–[47] and allocating RAN
resources [48], [49]. In particular, [45] introduces a computa-
tionally efficient orchestrator designed for optimizing energy
consumption in virtual RANs. Similarly, the ML-based ap-
proach outlined in [46] focuses on optimizing the allocation
of both RAN radio and computing resources. Additionally,
[48] and [49] tackle the orchestration and distribution of RAN
resources to slices and users, respectively.

As for the management of RAN intelligence, this aspect has
been scarcely addressed so far. It specifically demands optimal
utilization of the diverse array of multi-vendor solutions [50]

to meet the RAN service requirements set by MNOs. Solving
the orchestration problem involves satisfying strict minimum
requirements for service quality and latency, all while working
within the constraints of limited resources available for de-
ploying xApps and preventing conflicts between them. In this
regard, [51] proposes a service platform designed to automate
RAN orchestration and control. This platform supports the
automated management and deployment of AI-driven closed-
loop services, while also fulfilling service level agreements. In
contrast, [52] introduces a distributed and dynamic policy for
allocating and instantiating inference models. This approach
aims to guarantee the completion of inference requests while
trading off latency with accuracy. The study in [53] introduces
an auto-scaling framework for O-RAN systems that utilizes
data-driven latency models to allocate O-RAN applications
across O-Cloud servers. Its main goal is to ensure that target
latency requirements are met while maximizing the utilization
and monetization of the shared infrastructure. However, [51],
[52] do not specifically address the O-RAN architecture,
and as such, they do not adhere to O-RAN specifications.
On the other hand, [53] proposes a method for distributing
O-RAN applications within the O-Cloud, but it overlooks
an essential aspect of the network intelligence orchestration
problem, which is the assessment of MNOs intents. Indeed,
[53] is not concerned with determining the most appropriate
applications to meet operator intents.

Of particular relevance to our study is OrchestRAN, an
innovative O-RAN orchestrator outlined in [11] and further
evaluated in [54]. The core function of OrchestRAN is to
determine the optimal selection of xApps to deploy, and
their respective locations. This decision-making process is
geared towards satisfying the service demands put forth by
MNOs while simultaneously meeting target performance re-
quirements. Unlike our approach, OrchestRAN [11] assumes
that RAN services are monolithic, i.e., exclusively provided
by a single xApp. This setup restricts the potential for sharing
low-level operations among services, consequently overlook-
ing the significant issue of RAN resource consumption – a
major factor contributing to MNOs’ OPerational EXpenditures
(OPEX) [8], [45].

Finally, an earlier version of our work has been presented
in our conference paper [1]. With respect to [1], this paper
includes a lower-complexity solution framework and exper-
imental results performed through an O-RAN emulator on
the efficiency of OREO in allocating radio resources and in
fulfilling the target values of the services KPIs.

VIII. CONCLUSIONS

We propose OREO, an O-RAN-compatible orchestrator of
xApp-based RAN services. Unlike prior work, OREO rec-
ognizes that RAN services can be provided through sets of
elementary functions implemented as xApps, which can be
shared among different services to save resources. Leveraging
a comprehensive, yet tractable, system model, we formulated
the xDeSh problem and proved its NP-hardness. Then, in
light of the problem complexity, we presented an efficient
heuristic solution that configures requested services, maxi-
mizes xApps sharing, and dynamically allocates resources for
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Fig. 15: Test scenario #3: service configuration (left), xApp CPU allocation (center) and normalized service response latency (right) under
OREO (green) and OrchestRAN (blue).

xApp execution. To assess OREO performance, we conducted
an extensive analysis and compared OREO’s behavior to the
optimum and state-of-the-art benchmarks. Our results demon-
strate that OREO closely approximates the optimal solution,
outperforming existing methods by allocating more services
(on average, 16.2% and up to 35% in the largest scenario)
while consuming less CPU (on average, 25.6% and over
31% in small-medium scenarios), all while meeting service
requirements. We demonstrate that OREO provides robust
scalability, enabling it to handle larger scenarios due to its
low execution times. Furthermore, we developed an OREO
prototype in the Colosseum network emulator, demonstrating
its feasibility and seamless integration with the O-RAN archi-
tecture. Experimental results validate OREO’s capabilities as
it efficiently deploys xApps saving up to 66.7% of computing
resources and improving the QoS with respect to the state of
the art.
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