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ABSTRACT
RAN virtualization will become a key technology for the last mile
of next-generation mobile networks driven by initiatives such as
the O-RAN alliance. However, due to the computing fluctuations
inherent to wireless dynamics and resource contention in shared
computing infrastructure, the price to migrate from dedicated to
shared platforms may be too high. Indeed, we show in this paper
that the baseline architecture of a base station’s distributed unit
(DU) collapses upon moments of deficit in computing capacity.
Recent solutions to accelerate some signal processing tasks certainly
help but do not tackle the core problem: a DU pipeline that requires
predictable computing to provide carrier-grade reliability.

We present Nuberu, a novel pipeline architecture for 4G/5G DUs
specifically engineered for non-deterministic computing platforms.
Our design has one key objective to attain reliability: to guarantee
a minimum set of signals that preserve synchronization between
the DU and its users during computing capacity shortages and,
provided this, maximize network throughput. To this end, we use
techniques such as tight deadline control, jitter-absorbing buffers,
predictive HARQ, and congestion control. Using an experimental
prototype, we show that Nuberu attains >95% of the theoretical
spectrum efficiency in hostile environments, where state-of-art
approaches lose connectivity, and at least 80% resource savings.
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1 INTRODUCTION
The virtualization of radio access networks (RANs), based hitherto
on monolithic appliances over ASICs, will become the spearhead of
next-generation mobile systems beyond 5G [18, 33]. Initiatives such
as the carrier-led O-RAN alliance [12] have spurred the market and
the research community to find novel solutions that import the
flexibility and cost-efficiency of network function virtualization
(NFV) into the very far edge of mobile networks [9, 33].
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Figure 1: Virtualized RAN architecture [28]
Fig. 1 shows the architecture of a vRAN, with base stations (BSs)

split into a central unit (CU), hosting the highest layers of the stack;
a distributed unit (DU), hosting the physical layer (PHY); and a radio
unit (RU), hosting basic radio functions such as amplification or
sampling [1]. As depicted by the figure, vRANs shall rely on cloud
platforms comprised of pools of shared computing resources (mostly
CPUs, but also hardware accelerators brokered by an abstraction
layer), to host virtualized functions such as the PHY [28].

However, while CUs are amenable to virtualization in regional
clouds, virtualized DUs (vDUs)—namely, the vPHY therein—require
fast and predictable computation in edge clouds [7, 28, 33]. Shared
computing platforms provide a harsh environment for DUs because
they trade off the predictability supplied by dedicated platforms for
higher flexibility and cost-efficiency [21, 39]. Indeed, research has
shown that resource contention in shared computing infrastructure,
even when placing virtual functions on separate cores, may lead
to up to 40% of performance degradation compared to dedicated
platforms [24, 39]—the so-called noisy neighbor problem.

This is certainly an issue for traditional network functions such
as virtual switches, firewalls, or even CUs, wheremetrics such as tail
latency are particularly relevant. Consequently, substantial effort
has been devoted to the design of generic scheduling frameworks
that can balance computing efficiency and latency performance [26,
29]. However, as we show next, the requirements associated with
full-fledged DUs are harder: violating deadlines cause users to lose
synchronization with the DU, which leads to connectivity collapse.
1.1 The problem
To ease the explanation, we focus on frequency division duplex
where uplink (UL) and downlink (DL) transmissions occur concur-
rently in different frequency bands, and on 5G’s baseline numerol-
ogy (𝜇 = 0 in 3GPP TS 38.211), which yields one transmission time
interval (TTI) per subframe (SF), and a SF has a duration of 1 ms.
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Figure 2: Every TTI (=1 ms), a worker must execute a DU
job, comprised of a pipeline of interdependent DU tasks to
process UL SF 𝑛 and DL SF 𝑛 +𝑀 , within𝑀 − 1 ms.

Fig. 2 illustrates the basic operation of the baseline 4G/5G DU
processor [13, 15, 33]. Every TTI 𝑛, a worker initiates a DU job
comprised of a pipeline of tasks (hereafter referred to as DU tasks):
(1) process data and (2) control channels carried byUL SF𝑛, (3) sched-
ule UL/DL radio grants to be transported by DL SF 𝑛 + 𝑀 , and
(4) process data and (5) control channels for DL SF 𝑛 +𝑀 . A worker
executes a DU job in a thread, using computing resources allocated
by a task scheduler; and multiple workers perform DU jobs in paral-
lel to handle one DL SF and one UL SF every TTI, as shown in Fig. 2.
Importantly, given 3GPP specification (see details in §3), there is
a hard constraint on 𝑀 that imposes a computing time budget of
roughly𝑀 − 1 ms to process each DU job (usually,𝑀 = 4).

Violating this constraint has critical consequences on DUs. To
illustrate this, we set up an experiment with two DUs implemented
with vanilla srsRAN [13] (𝑀 = 4), each one associated with one
user implemented with srsUE and virtualized over Linux contain-
ers sharing 5 Intel Xeon x86 cores @ 1.9GHz. In this experiment,
vDU 1 transmits and receives as much data as possible. Conversely,
vDU 2 transmits and receives traffic following a random process
with different parameters, which generate normally-distributed
computing workload with the mean (line) and variance (shaded
area) shown at the bottom of Fig. 3: the higher the load variance
of vDU 2, the larger the fluctuations of the computing capacity
available for vDU 1. Fig. 3 (top) depicts vDU 1’s relative network
throughput in yellow (“Baseline”) as a function of the workload
produced by vDU 2. The figure shows that the performance of vDU
1 quickly deteriorates. The reason is that, because both vDUs share
the same CPU pool, vDU 1 occasionally suffers from CPU resource
deficit when vDU 2 produces a peak in demand. As a result, vDU 1
workers executing DU jobs violate their deadline to send out the
corresponding DL SF, as illustrated in Fig. 5, which causes the user
to lose synchronization and throughput to drop.

Indeed, completing a DU job every TTI is vital to preserve syn-
chronization between the BS and its users and thus attain reliability.
However, this is challenged by some compute-intensive operations
within DU tasks such as forward error correction (FEC). These
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Figure 6: To provide reliability, Nuberu decouples UL/DL
data tasks from the rest of the pipeline by integrating a tem-
porary grant scheduler, E-HARQ, and congestion control.

operations require substantial processing time even when using so-
lutions such as Intel FlexRAN [19] or Agora [9], which exploit data
parallelization, efficient work scheduling, or SIMD programming.
More specifically, FlexRAN provides open libraries to perform FEC,
rate matching, and cyclic redundancy checks. In turn, Agora builds
on FlexRAN to process UL and DL data in data channels (part of
DU tasks 1 and 4) with a solution that is optimized for multi-core
CPU platforms. To illustrate this, Fig. 4 shows the time required by
FlexRAN to successfully decode 4-Kbyte transport blocks modu-
lated with 64QAM, encoded with LDPC and 1/3 code rate, and for
different signal-to-noise-ratio (SNR) regimes between 10 dB and
30 dB, in a dedicated CPU core. Note that, albeit these approaches
provide high-performing solutions, they require dedicated comput-
ing platforms with deterministic performance to perform reliably.

Generic computing (or task) schedulers allocate computing re-
sources to DUworkers depending on the platform’s capacity and the
scheduler’s policy [26, 29]. However, different DU tasks (pipeline
stages) in the pipeline shown in Fig. 2 (in one DU job) cannot run
in parallel in different computing cores to expedite the latency of
a job because of the inter-dependencies between DU tasks, which
cause head-of-line blocking. For instance, UL channels (DU task 1)
have to be processed before scheduling UL/DL data (DU task 3), or
data grants (DU task 3) must be computed before processing DL
data (DU tasks 4) and control channels (DU task 5). More details in
§3. The obvious solutions applied today in the market [7, 18, 33],
namely, dedicated hardware acceleration and over-dimensioning,
diminish the very reasons that make virtualization appealing for
the RAN in the first place: flexibility and cost-efficiency. On the one
hand, research has shown that shared platforms require 5x more
resources than dedicated platforms to attain similar performance
guarantees in real mobile networks [25]. On the other hand, dedi-
cated accelerators make vDUs more expensive and power-hungry
than their pure HW counterparts [30]—let alone the fact that the
much-longed hardware/software decoupling is not achieved.

In summary, optimized schedulers and baseband libraries are ob-
viously important but these solutions cannot provide hard latency
guarantees for every DU job and, as a consequence, do not provide
carrier-grade reliability in non-deterministic platforms. Hence, we
must find new solutions to enable reliable vRANs without compro-
mising the advantages of virtualization.
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1.2 The solution
We propose Nuberu, a novel pipeline architecture for 4G/5G DUs
that is suitable for non-deterministic computing platforms. Our
design follows one objective: to guarantee a minimum viable sub-
frame (MVSF) for every TTI during moments of shortage in computing
capacity to provide reliability and, provided this, maximize network
throughput. During such shortages, an MVSF encodes those signals
and control information required to preserve user synchronization
by temporarily holding off data delivery and relying on predictions.

To this end, we set up a deadline within every DU job to begin
building an MVSF even if data processing tasks are unfinished. This
deadline, depicted in blue in Fig. 6, is set such that there is enough
time to process an MVSF before the final job completion deadline
(in red in the figure). This is viable because, different from data
processing tasks, the tasks involved in building an MVSF require
little and roughly deterministic time as we will show in §3. To do
this efficiently, we need to decouple data processing tasks such
that the information required to build an MVSF is ready on time
and network throughput is maximized during computing capacity
fluctuations. Consequently, we apply the following techniques.
(1) To process DL data channel tasks:
• We adopt a two-stage DL radio scheduling approach:
– We issue temporary DL grants as early as possible in the
DU pipeline, as shown in Fig. 6. Dedicated workers process
(encode, modulate, etc.) these grants in separated threads
and store the resulting data in a buffer.

– Upon the MVSF deadline, final DL data grants are computed
based on those already processed successfully and are avail-
able in the buffer. Grants generated in a job 𝑛 that are not
processed on time are hence delayed for a later job.

• To mitigate the number of delayed DL data grants, the amount
of DL data granted by the temporary scheduler is regulated by
a congestion controller that adapts the flow of DL data grants
to the availability of computing resources.

(2) To process UL data channel tasks:
• Dedicated workers process (demodulate, decode, etc.) UL data
carried by each UL SF in separated threads.
• Upon the MVSF deadline, an early HARQ (E-HARQ) mech-
anism infers the decodability of UL data based on feedback
from the workers, as shown in Fig. 6. This enables us to esti-
mate the radio information that is required to build an MVSF
even if UL data processing tasks have not finished on time.
• To maximize the predictive performance of E-HARQ, which
depends on the amount of work done before the MVSF dead-
line, another congestion controller adapts the allocation of UL
radio resources to the available computing capacity.

As shown by the purple line in Fig. 3, Nuberu can sustain maxi-
mum throughput despite severe fluctuations in computing capac-
ity. The details of our design and our experimental evaluation are
presented in §4 and §5, respectively. We close our paper with a
literature review in §6 and our conclusions in §7.

2 BACKGROUND
In this section, we first introduce the fundamentals of 4G LTE
and 5G New Radio (NR) that are relevant to understand this work
(§2.1). Then, we present the details of the baseline PHY pipeline
architecture introduced earlier (§2.2).
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Figure 7: Subframes and PHY radio channels (FDD),𝑀 = 4.

2.1 A primer in LTE & NR PHY
NR adopts orthogonal frequency divisionmultiplexing access (OFDMA)
with cyclic prefix (CP) for both DL and UL transmissions, which
enables fine-grained scheduling over a time-spectrum grid, and
multiple-input multiple-output (MIMO) techniques. While LTE
also adopts OFDM in the DL, it relies on single-carrier FDMA (SC-
FDMA) for the UL, a linearly precoded flavor of OFDMA that re-
duces peak-to-average power ratio in mobile terminals.

An example of the radio operation for FDD is depicted in Fig. 7.
In the time domain, each frame is comprised of 10 subframes (SF),
each with 1-ms duration. Each SF comprises 2 slots, each with 7
(with normal CP) or 6 (with extended CP) OFDM symbols for LTE;
and one or more slots, each with 14 (with normal CP) or 12 (with
extended CP) OFDM symbols for NR, depending of the (flexible)
OFDM numerology employed, which is configurable in 5G. Accord-
ingly, a transmission time interval (TTI), which specifies the time
resolution for scheduling, is equal to 1 ms in LTE and configurable
to one or multiple slots in NR. Without loss in generality, we will
assume a TTI is equal to 1 ms (baseline numerology in NR) to
simplify our explanations. In the spectrum domain, SFs comprise a
number of subcarriers with inter-subcarrier spacing equal to 15 kHz
in LTE and variable, between 15 KHz and 240 kHz, for NR. LTE
and NR support different bandwidth configurations up to 20 MHz
and 100 MHz, respectively. The time-spectrum grid is divided into
channels that are summarized in Table 1.

Downlink Channels and Signals
PDSCH Physical DL Shared Channel: Carries user data, higher-layer

user information and paging, as indicated in PDCCH.
PDCCH Physical DL Control Channel: Carries resource assignments

and UL scheduling grants.
PBCH Physical Broadcast Channel: Carries basic information about

the BS, e.g., bandwidth.
PHICH (LTE only) Physical HARQ Indicator Channel: Carries UL

Hybrid-ARQ feedback.
PCFICH (LTE only) Physical Control Format Indicator Channel: Indi-

cates the format used for PDCCH and PHICH.
PSS/SSS Primary/Secondary Synchronization Signals: Signals used for

synchronization and BS identity.

Uplink Channels and Signals
PUSCH Physical UL Shared Channel: Carries user data as indicated

in PDCCH and, optionally, UL Control Information (UCI).
PUCCH Physical UL Control Channel: Carries UCI including feedback

(HARQ, channel quality, etc.) and scheduling requests.

Table 1: LTE & NR Channels
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A physical resource block (PRB), comprised of 12 subcarriers
and 1 slot, is the smallest radio resource unit that can be allocated;
and a transport block (TB) carries data using a variable number of
PRBs. The size of a TB depends on the state of higher-layer (MAC,
RLC) data buffers and the selected modulation and coding scheme
(MCS), which in turn depends on the signal-to-noise ratio (SNR).
Every TTI, PDSCH (for DL) and/or PUSCH (for UL) carry one TB
(or two, in some MIMO settings) per user. The allocation of radio
resources is indicated by DL and UL grants, which are encoded into
PDCCH’s Downlink Control Information (DCI) as shown in Fig. 7.

Hybrid automatic repeat request (HARQ), combining forward
error correction (FEC) and ARQ, is used for error control. To this
end, explicit feedback is received from the users in UL Control
Information (UCI) carried by PUSCH or PUCCH, as shown by the
dotted arrows in the figure, and TBs are encoded with low-density
parity-check codes (NR) or turbo codes (LTE).

More details can be found in [8, 23] and references therein.

2.2 Baseline DU pipeline
The above operations are inter-dependant, e.g., PDCCH in DL SF 𝑛
carries the grants needed to process PDSCH in DL SF 𝑛 and PUSCH
in UL SF 𝑛+𝑀 , UCI in UL SF 𝑛 carries feedback required to compute
DL grants in DL SF 𝑛 +𝑀 , HARQ feedback from PUSCH processing
in UL SF 𝑛 is required to compute grants in DL SF 𝑛 +𝑀 , etc. All of
them are required by a DU. To do this, every TTI 𝑛 an idle worker
performs a DU job 𝑛 comprising the pipeline of Fig. 8 [13, 15, 33]:
(1) Process uplink subframe 𝒏 (received during TTI 𝑛):
1.1. First, wireless samples corresponding to the 𝑛th UL SF are

transformed into OFDM symbols by performing Fast Fourier
Transformation (FFT) and CP removal.1

1.2. Then, the PUSCH and PUCCH are demodulated, decoded and
processed, providing UL TBs and UL feedback (DL HARQ,
channel quality, scheduling requests).

(2) Compute UL/DL grants carried by DL SF 𝒏 +𝑴 : Schedule
DL and UL radio resources considering UL feedback.

(3) Process downlink subframe 𝒏 +𝑴 :
3.1. First, base signals are processed, including PSS/SSS, PBCH,

and, in case of LTE, PCFICH.
3.2. Then, the PDSCH and the PDCCH are processed, encoded,

and modulated, according to the UL/DL grants.
3.3. Finally, the encoded OFDM symbols corresponding the DL

SF 𝑛 + 𝑀 are converted into wireless samples by adding
CP and performing inverse FFT (IFFT). The corresponding
wireless samples are then sent to the radio transmission
chain, with sub-ms transportation delay 𝛿 , at time 𝑛 +𝑀 .1

1 This task may be offloaded to the RU in O-RAN.

Existing DU solutions implement the above baseline pipeline using
highly-optimized libraries such as Agora or FlexRAN to expedite
some operations involved therein via parallelization, SIMD pro-
gramming, or dedicated hardware accelerators.

3 DIAGNOSIS
The design presented in §2.2 is not suited for non-deterministic com-
puting platforms such as shared clouds. Namely, existing solutions
implementing the above baseline pipeline cannot guarantee the
timely execution of individual jobs without the assistance of dedi-
cated hardware acceleration or aggressive over-dimensioning [33],
which compromise flexibility and cost-efficiency [30].

Timing constraints. 3GPP defines several timing constraints [2].
Relevant to our work are𝐾3 (latency betweenACK/NACK reception
in UL UCI and the corresponding DL re-transmission in PDSCH),
and 𝐾4 (latency between PUSCH reception and delivery of HARQ
feedback). In LTE, 𝐾4 = 3 ms, which implies𝑀 = 4. Though these
timings are more flexible in NR, they are set at longer timescales by
the CU, and𝑀 = 4 is the usual choice [20]. As a consequence, there
is a hard deadline to process each DU job within 𝑀 − 2𝛿 − 1 ms,
as shown at the bottom of Fig. 8. Violating this deadline prevents
timely delivery of DL SFs and, as a result, loss of synchronization
and connectivity between the DU and its users, as shown by the
baseline performance in the experiment of Fig. 3.

Inter-task dependencies. Regardless of individual processing
optimizations [9], different DU tasks within a job have strong de-
pendencies as shown by the blue arrows in Fig. 8:
• DL grants must be computed before PDSCH because they carry
information required to encode and modulate DL TBs;
• PUSCH and PUCCH must be processed before computing DL
grants because these channels carry users’ feedback (DL HARQ,
channel quality, etc.) in UCI messages (dotted arrows in Fig. 7),
which is required to schedule DL data appropriately;
• UL HARQ feedback can only be computed after processing
PUSCH; and this feedback is required to schedule UL grants
within the same job to satisfy 3GPP timing constraints;
• UL grants must be computed before processing PDCCH, which
carries those grants, and (in case of LTE) before processing
PHICH, which carries UL HARQ feedback.
• All the channels and other basic signals (PSS, SSS) must be
processed before generating time-domain signals (IFFT).
As a result, known implementations (e.g., Samsung’s vDU [33],

srsRAN2 and OpenAirInterface3) perform each DU job in a single-
thread pipeline (Fig. 8), or in a multi-thread pipeline where each
thread has to wait and be executed in a precise order [15], which
2http://www.srsran.com/
3https://www.openairinterface.org/
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boils down to Fig. 8 again. Although solutions like Agora and
FlexRAN help to accelerate the processing of individual DU tasks,
the aforementioned dependencies prevent running different DU
tasks in a job in parallel to expedite the pipeline of Fig. 8.

Non-deterministic tasks. As hinted in our toy experiment
shown in Fig. 3, the computing time required by DU tasks highly
depends on the instantaneous availability of computing resources.
We note moreover that the most compute-intensive tasks also de-
pend on the context, that is, on the data load (rate of TBs to de-
code/encode) and on the mobility patterns of the users (signal qual-
ity) [5], which can induce very quick fluctuations in the demand
for computing resources. To illustrate this, we deploy the baseline
vDU, implemented in srsRAN [13], processing downlink and uplink
traffic over one Intel i7 core in a 10-MHz band. Fig. 9 depicts the
achieved throughput in both the uplink and downlink (top sub-
plots), and the median time incurred by the CPU to perform DU
tasks (bottom subplots). We take these measurements for different
load intensities (relative to the capacity in UL and DL, respectively)
and average signal-to-noise ratios (SNR) indicating the channel
quality for both UL and DL, and adapt the MCS to minimize the
workload issued by the decoder (differently to our results in Fig. 4).
The results yield two observations. First, processing PDSCH and
(especially) PUSCH are the two tasks that consume CPU time the
most, which is not surprising as it has been observed before [13].
Second, while the CPU time of the rest of tasks (and others not
shown in the figure to reduce clutter) remains practically constant,4
the time required to process PDSCH and PUSCH highly depends on
the context; that is, on the SNR—and so on the mobility patterns of
the users, and on the load—and hence on the users behavior. Note
that even if shared pools of hardware accelerators are used à la
cloud to reduce the processing time of some of these tasks, queueing
in the abstraction layer brokering access to the accelerators across
multiple vDUs incur in similar issues [28].

Conclusion: Because of the above, baseline solutions cannot
guarantee the timely completion of DU jobs when facing computing
fluctuations, which cause unreliability in scenarios such as that of
Fig. 3. We hence claim that a re-design of the DU pipeline is required
for non-deterministic computing platforms such as shared clouds.

4To be precise, the processing time of these tasks does vary with the number of users
(e.g., scheduling becomes more complex). However, our results (omitted due to space
constraints) indicate this is negligible compared to that of data processing tasks.
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Figure 10: MVSF deadline for data processing tasks in job 𝑛.

4 NUBERU
To overcome the issues introduced in §3, we present a novel DU
architecture, which we name Nuberu. Our solution is specifically
engineered for 4G LTE and 5G NR workloads that are virtualized
over clouds of shared resources with non-deterministic capacity.

Our design has one goal: to guarantee every TTI a minimum
viable subframe (MVSF) that provides the smallest set of signals re-
quired to preserve user synchronization while maximizing through-
put during shortages of computing resources. To this end, we decou-
ple each job’s data tasks into separate threads as shown in Fig. 10:
(1) DU forethread: In charge of (𝑖) building the MVSF; and (𝑖𝑖) coor-

dinating the remaining DU data workers (middle of Fig. 10),
(2) DL-Data DU workers: One or more threads in charge of the bulk

of PDSCH processing tasks (bottom of Fig. 10),
(3) UL-Data DU workers: One or more threads in charge of the bulk

of PUSCH processing tasks (top of Fig. 10);
and set up a hard deadline Φ𝑛 for every job 𝑛 (blue line in Fig. 10)
upon which an MVSF is compiled even if data workers have not fin-
ished. Note that, as shown before, basic MVSF tasks in charge of the
forethread (such as computing grants or building PDCCH) require
little or deterministic processing time, which can be estimated a
priori to calculate Φ𝑛 =𝑛+𝑀−𝜏 , where 𝜏 is the time required to com-
pile an MVSF plus the transportation delay (𝛿 ms). The challenge is
to decouple and adapt data processing tasks in a way such that the
performance loss caused by computing fluctuations is minimized.

In the following, we first present the overall Nuberu design (§4.1)
and then we detail our solutions to address this challenge for DL
data processing tasks (§4.2) and UL data processing tasks (§4.3).

4.1 Overall system design
Fig. 11 shows the detailed design of Nuberu. The forethread is re-
sponsible for building an MVSF and exploiting the work of data
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workers to maximize performance during shortages of comput-
ing resources. Note that, as a consequence of the MVSF deadline,
Nuberu divides the time budget of each job into two phases:

Phase I: The forethread carries out the following sequence of basic
tasks after FFT1 to process the received UL SF 𝑛 and other UL-
independent tasks to begin the process of building DL SF 𝑛 +𝑀 :
(1) (modified task) If UL SF 𝑛 carries PUSCH, demultiplex UL TBs

from UCI and hand over the coded TBs to UL-Data workers.
(2) Process PUCCH/UCI if UL SF 𝑛 carries it, and encode base

signals (PSS/SSS) and the PBCH for DL SF 𝑛 +𝑀 .
(3) (new task) Compute temporary DL grants depending on the

availability of data, radio resources, and computing capacity.
This is the first stage of a novel two-stage radio scheduling
approach, which uses a congestion controller to issue temporary
grants that may be processed before the MVSF deadline by a DL-
Data worker. During quick computing fluctuations, some grants
may not be processed on time and, to avoid dropping them and
waste resources, they are stored in a buffer for handling by the
second scheduling stage of a posterior job (see §4.2).

(4) (new task) Snooze up until time Φ𝑛 (the MVSF deadline). This
step is key to maximize the time budget used by data workers, yet
give the forethread leeway to generate an MVSF that preserves
connectivity if data workers violate their deadline.

Phase II: The forethread awakes at Φ𝑛 and invests the remaining
𝜏 − 𝛿 ms in the following tasks to build DL SF 𝑛 +𝑀 before IFFT1:
(1) (new task) Early-HARQ (E-HARQ) collects data from UL-Data

workers that did not finish on time, and makes a prediction
about the decodability of the corresponding TBs. This allows
us to use promising UL TBs that otherwise would have to be
dropped because they were not decoded on time. See §4.3.1.

(2) (modified task) Second stage of our radio scheduling approach:
given the finished UL-Data workers, the E-HARQ outcome, and
the grants actually encoded on time, the final UL/DL grants
are computed by the MAC scheduler. Similar to its DL counter-
part, UL grants are ruled by a congestion controller, detailed
in §4.3.2. In the worst case, when no data worker finished on
time (e.g. due to a sudden shortage of computing resources), no
DL grants are allocated and the SF becomes an MVSF with the
only responsibility of preserving user synchronization.

(3) If DL grants are provided, the encoded TBs are modulated and
mapped into the radio resource grid, and all the remaining
control channels are processed.
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Figure 12: Decoupling DL data tasks in a job 𝑛

4.2 DL data tasks
The first challenge is to schedule only the amount radio resources
that can be processed on time, and to buffer those that cannot be
timely processed for a later job. We address this with a two-stage
radio scheduling approach and a congestion controller.
4.2.1 Two-stage DL radio scheduling. As shown in Fig. 12, we adopt
a two-stage approach to compute DL grants. In the first stage, Nu-
beru issues temporary DL grants as early as possible during each
DU job’s Phase I. Dedicated DL-Data workers then process (encode,
modulate, etc.) the corresponding DL TBs in separated threads, and,
when the task is completed, the worker stores the respective en-
coded TB in a buffer, as depicted by Fig. 12. In a second stage, during
Phase II (after the MVSF deadline Φ𝑛), the forethread computes
the final DL grants based on those that have already been encoded
and, hence, are available in the buffer. In this way, we can begin
processing DL TBs as early as possible to maximize the time budget
of DL-Data workers without compromising the budget of UL-Data
workers, which need to finish before allocating DL resources.

It is expected that the temporary scheduler issues DL grants
such that the amount of work they require by the DL-Data worker
can be carried out before Φ𝑛 , as illustrated in Fig. 13’s case (1). We
achieve this by employing a rate controller that is introduced later
in §4.2.2. However, during quick computing fluctuations, the DL
grants computed by job 𝑛’s temporary scheduler may be ready only
at job 𝑛 + 𝐾 , for some integer 𝐾 > 0. Therefore, 𝐾 represents the
amount of time that DL data is buffered in the vPHY, which allows
us to absorb computing fluctuations appropriately and hence to
preserve resiliency during events of computing volatility. This is
depicted by cases (2) and (3) in Fig. 13, which are DL TBs that could
not be encoded on time and hence can only be placed into a DL SF in
a later job. Not only do we attain resiliency with this approach, but
we also increase efficiency compared to the baseline, which must
drop grants that do not meet their deadlines, wasting resources.
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Figure 13: DL temporary grants and DL congestion control
with 𝜆 = 1/4 during job 𝑛. Delayed grants (in orange) can
only be placed in a later job 𝑛 + 𝑘 , for some 𝑘 > 0.
4.2.2 DL Congestion Control. Guaranteeing the timely completion
of vDU jobs in non-deterministic platforms requires adapting the
demand for (shared) computing resources to the instantaneous
platform’s capacity. This is a fundamentally different paradigm
to that of RANs using dedicated hardware, which allocate radio
resources based only on wireless conditions and network demand.

The temporary DL grants issued during Phase I generate work-
load for DL-Dataworkers. The processing time of the corresponding
TBs depends on the amount of data transported therein as well as on
the allocated computing resources by some task scheduler. Though
allocating computing resources appropriately obviously help, it
is not enough to provide the hard guarantees we require. In the
following, we propose a mechanism that adapts such computing
workload based on observations from the workers’ behavior.

Adapting a flow of requests (encoding) to a server capacity (com-
puting platform) falls into the realm of congestion control. Hence,
we resort to mechanisms amply used in networking protocols
such as TCP. To this end, Nuberu’s radio schedulers use a DL
congestion window (𝑐𝑤𝑛𝑑DL) that regulate the flow of DL grants.
We adopt an additive-increase / multiplicative-decrease (AIMD)
algorithm where 𝑐𝑤𝑛𝑑DL increases by 𝛼 PRBs every DU job 𝑛
(𝑐𝑤𝑛𝑑 (𝑛+1)DL = 𝑐𝑤𝑛𝑑

(𝑛)
DL + 𝛼) as long as congestion is not detected

or the maximum PRB capacity is reached, and multiplicatively
decreases by 𝛽 ≤ 1 (𝑐𝑤𝑛𝑑 (𝑛+1)DL = 𝑐𝑤𝑛𝑑

(𝑛)
DL · 𝛽) if congestion is

detected. Nuberu infers congestion if the buffer of encoded TBs
contains 𝜆 > 0 times the vDU’s PRB capacity or more.

Fig. 13 shows an example where 𝑐𝑤𝑛𝑑 (𝑛)DL = 3/4 of the PRB
capacity and 𝜆 = 1/4 at job 𝑛. Accordingly, in this example the
temporary scheduler issues three TBs, each with 1/4 of the PRB
capacity to fill 𝑐𝑤𝑛𝑑 (𝑛)DL . The first TB, case (1), is encoded before the
MVSF deadline, added to the buffer, and then immediately placed in
DL SF 𝑛+𝑀 , i.e., it does not need to be stored in the buffer. Conversely,
in cases (2) and (3), the respective workers did not finish their
tasks on time. Consequently, the encoded TBs (once the respective
workers finish) have to be stored for handling by a later job 𝑛+𝐾 for
some𝐾 > 0 (and hence will be delivered in DL SF𝑛+𝑀+𝐾 ). Because
in this example 𝜆 = 1/4 and every stored TB carries 1/4 of the
vDU’s PRB capacity, each item triggers a multiplicative reduction
in 𝑐𝑤𝑛𝑑DL, as shown by the colored bars at the right.

4.3 UL data tasks
As soon as a UL SF arrives, the forethread hands over the (coded) UL
TBs carried by PUSCH to idle UL-Data workers to decode them. The
challenge, in this case, is to schedule UL radio resources that can be
processed by the vDU on time (like the DL case), and compute UL
feedback by the MVSF deadline for those that cannot. We address
this with another congestion controller and with predictive HARQ.
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Figure 14: Decoupling UL data tasks in a job 𝑛

4.3.1 Early HARQ. Both types of decoders managed by UL-Data
workers in 4G and 5G employ an iterative algorithm to decode
data, and a stopping criteria based on CRC checks to decide on the
decodability of the TB [16, 32]. Then, based on such a decision,
feedback is provided to the DU forethread so grants for UL re-
transmissions (or just new UL data) are allocated.

Like its DL counterpart, it is expected that UL TBs are often de-
coded before the MVSF deadline if computing resources have been
provisioned appropriately and our UL congestion controller (see
§4.3.2) adapts fast enough. However, due to the volatility inherent
to shared computing environments, UL-Data workers may not fin-
ish their task by time Φ𝑛 to provide feedback to build DL SF 𝑛 +𝑀 .
Simply discarding such TBs is a waste of radio resources. Moreover,
the computing capacity has no impact on the decodability of TBs
but only on the amount of time required to process them.

To avoid discarding UL TBs that cannot be processed in time, the
forethread first performs Early HARQ (E-HARQ) after the MVSF
deadline (Φ𝑛), as shown in Fig. 14, to predict the decodability of
those TBs based on feedback from the workers. This prediction pro-
vides the required information to initiate Phase II, and avoids wast-
ing expensive radio resources when dropping late UL TBs, which
now do not have a hard deadline to be processed (demodulated,
decoded, etc.). E-HARQ has received attention for low-latency com-
munications. The approach is usually to design a stopping criterion
for the iterative algorithms used by turbodecoders [32] and LDPC
decoders [22], or to predict the decodability of the data to send
HARQ feedback early [35]. As mentioned before, Nuberu leverages
this technique to provide extra time budget for UL workers.

Let 𝑆𝑤,𝑡𝑛 ∈ S denote the state of an UL-Data worker𝑤 at time
𝑡 in DU job 𝑛, where S is the state space of the decoder. At time
Φ𝑛 , the forethread observes the state of each unfinished worker, i.e.,
𝑆𝑤,Φ𝑛 for all𝑤 ∈W𝑢 whereW𝑢 is the set of active UL-Data workers,
and apply a rule Π(𝑆𝑤,Φ𝑛 )∈{UNDECODABLE, DECODABLE, UNKNOWN}
to decide upon the decodability, undecodability, or uncertain de-
codability of the TB. Once E-HARQ infers the decodability of the
TB, it signals the UL MAC scheduler so it delivers the appropriate
UL HARQ feedback to the users and/or schedules re-transmissions,
accordingly, as if the workers had finished their task. UNKNOWN TBs
are treated by the UL MAC scheduler as UNDECODABLE TBs; how-
ever, this information is useful for congestion control, as we will
show in §4.3.2. If Π(𝑆𝑤,Φ𝑛 ) = DECODABLE, UL-Data worker𝑤 is
allowed to continue up till a maximum number of decoding itera-
tions wherein, as per 3GPP specification, CRC validation is used as a
stopping criterion. Otherwise, the TB is discarded and the UL-Data
worker𝑤 becomes idle again and ready to receive new work.
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Figure 15: Mean extrinsic magnitude for each iteration of
a turbodecoder. Dot/line indicate the average value across
multiple PUSCH TBs with different MCS, TBS and SNR. Er-
ror bars indicate the standard deviation.

Our approach to design the rule Π and S draws from different
ideas in prior work on turbo and LDPC codes. The key idea behind
rests upon the concept of extrinsic information, which spawns or-
ganically by belief propagation algorithms used by both turbo and
LDPC codes. We refer the reader to [38] for detailed information
about these coding techniques. In a nutshell, belief information is
encoded into log-likelihood ratios (LLRs), 𝐿𝑏 := ln Prob(𝑏=+1 |input)

Prob(𝑏=−1 |input) ,
where “input” refers to all the inputs of each decoding node 𝑖 in
a decoder, and 𝑏 represents the information symbol (bit). The key
to iterative decoding is the sequence of a posteriori LLRs of the
information symbols,

⃗⃗⃗
𝐿
(𝑘)
𝑥𝑖 , which is exchanged every iteration 𝑘

between the decoding nodes of the decoder so each node takes
advantage of the information computed by the others. To improve
the bit estimations every iteration, the different nodes need to ex-
change belief information that do not originate from themselves. The
original concept of extrinsic information was in fact conceived to
identify the information components that depend on redundant
information introduced by the incumbent code. Such extrinsic LLRs⃗⃗⃗
𝐿
(𝑘)
𝑒𝑖 are used to transform a posteriori LLRs into a priori LLRs⃗⃗⃗

𝐿
(𝑘+1)
𝑎𝑖 used as an input in the next iteration. For instance, a turbo

decoder, consisting of two convolutional decoding nodes, computes
two sets of extrinsic LLR vectors every iteration as follows:

⃗⃗⃗
𝐿
(𝑘)
𝑒𝑖 =

⃗⃗⃗
𝐿
(𝑘)
𝑥𝑖 −

⃗⃗⃗
𝐿 𝑥 −

⃗⃗⃗
𝐿
(𝑘)
𝑎𝑛 , ∀𝑖 ≠ 𝑛 ∈ {1, 2}

where
⃗⃗⃗
𝐿 𝑥 is the decoder’s sequence of input symbols. Extrinsic

LLRs can be good estimators of the decodability of the code blocks
(CBs) that constitute a TB. We define 𝑆𝑤,Φ𝑛 := {𝐾,

⃗⃗⃗
𝐿 𝑒1 , . . . ,

⃗⃗⃗
𝐿 𝑒𝐷 },

where 𝐷,𝐾 ∈ N are, respectively, the number of decoding nodes
and the number of iterations completed by 𝑤 by time Φ𝑛 .

⃗⃗⃗
𝐿 𝑒𝑖 :=

[𝐿 (1)𝑒𝑖 , . . . , 𝐿
(𝐾)
𝑒𝑖 ] is a 𝐾-dimensional vector comprised of the mean

magnitude of extrinsic LLRs at every iteration 𝑘 = {1, . . . , 𝐾}, i.e.,
𝐿
(𝑘)
𝑒𝑖 = 1

𝑁

∑𝑁
𝑏=1 |𝐿

(𝑘)
𝑒𝑖 ,𝑏
|, where 𝑁 is the length of the CB being de-

coded and 𝐿𝑒𝑖 ,𝑏 is the extrinsic LLR of bit 𝑏.
Fig. 15 shows the mean

⃗⃗⃗
𝐿 𝑒𝑖 of both decoding nodes in a turbo

decoder for undecodable CBs (in red) and for decodable CBs (in
other colors).5 The color of decodable CBs indicate the maximum
number of iterations required till CRC validates their successful
decoding. We can observe that the mean extrinsic magnitude of un-
decodable CBs (in red) is small and rather steady across iterations. In
5Dataset available at https://github.com/agsaaved/nuberu

Algorithm 1 E-HARQ rule Π®𝛾
1: if 𝐾 < 1 then
2: if P(MCS, SNR, 𝑁 ) > 𝜖 then ⊲ Using [31]
3: Ω ← UNKNOWN
4: else
5: Ω ← DECODABLE
6: else
7: if

(
�̄�
(𝐾 )
𝑒𝐷

< 𝛾1
)
∥
(
�̄�
(𝐾 )
𝑒𝐷
− �̄� (2)𝑒𝐷 < 𝛾2

)
then

8: Ω ← UNDECODABLE
9: else
10: Ω ← DECODABLE
11: Return Ω ∈ {UNDECODABLE, DECODABLE, UNKNOWN}

contrast, the mean extrinsic magnitude of decodable CBs grow over
iterations. That is, there exist patterns of extrinsic information as it
propagates across iterations in the decoder that are distinguishable
between decodable CBs and undecodable CBs.

In light of the above, we implement a simple ruleΠ ⃗⃗𝛾 , parametrized
by ⃗⃗𝛾 = [𝛾1, 𝛾2] and detailed in Algorithm 1, that poses minimal over-
head to the DU forethread. Note that, in case we do not have enough
extrinsic information to make a prediction because the decoder has
not completed any iteration, we resort to simple predictive models
that only rely on SNR estimates such as that in [31].

4.3.2 UL Congestion Control. To maximize network performance,
we need to generate UL grants that can be decoded before the MVSF
deadline or allow sufficient decoding iterations to help E-HARQ
make accurate predictions. Otherwise, these UL grants would have
to be discarded, which wastes resources. To achieve this, we resort
to another congestion controller that adapts the emission of UL
grants to the availability of computing resources.

Similar to its downlink counterpart, we define a congestion win-
dow 𝑐𝑤𝑛𝑑

(𝑛)
UL , which bounds the number of UL PRBs that can be

allocated to the DU’s users. Again, we adopt a simple AIMD algo-
rithm that increases 𝑐𝑤𝑛𝑑 (𝑛)UL additively (𝑐𝑤𝑛𝑑 (𝑛+1)UL = 𝑐𝑤𝑛𝑑

(𝑛)
UL +𝛼)

when congestion is not inferred, and decreases multiplicatively
(𝑐𝑤𝑛𝑑 (𝑛+1)UL = 𝑐𝑤𝑛𝑑

(𝑛)
UL · 𝛽), with 𝛽 < 1, when congestion is inferred.

The obvious approach to estimate congestion from UL workload is
to signal so every time a UL-Data worker does not finish before the
MVSF deadline. However, this method does not fully exploit the
predictive capability of our E-HARQ mechanism, which can infer
the decodability of a TB well before explicit CRC confirmation. Con-
versely, our approach infers congestion every time E-HARQ cannot
provide a prediction with certainty, i.e., outputs UNKNOWN, which
occurs every time a UL-Data worker is unable to run sufficient
decoding iterations before its deadline (see Alg. 1).
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Figure 16: E-HARQ and UL congestion control during job 𝑛
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Fig. 16 shows an example of a job where PUSCH carries three
UL TBs, one of which, marked in green as case (1), is declared
decodable (CRC has been verified) or not (the iterative algorithm
has reached the maximum number of iterations allowed before the
MVSF deadline. This causes the controller to additively increase
𝑐𝑤𝑛𝑑

(𝑛)
UL . Conversely, cases (2) and (3) require of the predictive

ability of E-HARQ because they did not finish on time. In case (2),
E-HARQ provides a certain estimation (decodable or undecodable),
which also increases 𝑐𝑤𝑛𝑑 (𝑛)UL because the amount of work done
on time is enough to let E-HARQ be accurate. In the last case (3),
however, E-HARQ cannot provide a certain estimation because of
lack of sufficient extrinsic information and, as a result, congestion
is assumed and 𝑐𝑤𝑛𝑑 (𝑛)UL is decremented accordingly.

5 VALIDATION AND EVALUATION
To validate and evaluate our pipeline design, we have implemented
Nuberu into srsRAN’s stack [13] with the parameters shown in
Table 2, and use its implementation of the baseline architecture
shown in Fig. 8 as our benchmark. This provides a fair comparison
because in this way both Nuberu and the baseline approach rely
on identical implementations of individual tasks such as "PUSCH
process" or "PDSCH process". Consequently, we can show that the
gains provided by Nuberu do not come from optimizing signal
processing operations within individual tasks but from Nuberu’s
architectural advantages over unreliable computing platforms.

Table 2: Parametrization of Nuberu

Parameter Value

Pipeline parallelization depth (𝑀) 4
Nr. DL-Data DU workers 3 per forethread
Nr. UL-Data DU workers 3 per forethread

UL-Data DU worker’s buffer size 8 grants
DL-Data DU worker’s buffer size 25 grants

Phase II budget (𝜏 ) 1.3 ms
UL Congestion Control (𝛼, 𝛽) 3, 0.9

DL Congestion Control (𝛼, 𝛽, 𝜆) 3, 0.9, 2
E-HARQ (𝛾1, 𝛾2) 600, 200

It is also worth remarking that, different to previous works [9, 19]
that do not implement a complete DU pipeline, both Nuberu and its
baseline benchmark support end-to-end communication with 3GPP
compliant UEs. To this end, we rely on srsRAN’s implementation
of higher layers of the stack (RLC, PDCP) and its lightweight vEPC
to carry out experiments with legacy IP traffic.

Moreover, we use an off-the-shelf Intel(R) Xeon(R) CPU D-1528
server with six x86 cores @ 1.90GHz, and Linux containers to host
vDU instances. To avoid uncontrolled effects, we disable hyper-
threading and apply CPU shielding to allocate five cores to host
vDU instances; the remaining core is reserved for the OS and other
processes (e.g., for monitoring). To focus on harsh computing envi-
ronments, we do not use any hardware acceleration. In summary,
this section introduces the following set of results:
• Validate Nuberu’s approach and assess its performance in DL
scenarios with different computing capacity settings (§5.1);
• Evaluate Nuberu’s congestion controller (§5.2);
• Assess Nuberu’s E-HARQ under different network conditions
and computing capacity settings (§5.3);

• Estimate the network capacity region of a single vDU in different
computing capacity settings (§5.4);
• Evaluate Nuberu in scenarios with a variable number of vDUs
contending for shared computing resources (§5.5); and
• Estimate the network capacity region in terms of individual ag-
gregate throughput in scenarios with two vDUs (§5.6).

5.1 Downlink
We begin by assessing the performance of Nuberu with downlink
traffic. To this end, we set up a scenario comprised of one vDU
transmitting as much load as possible with high SNR, and mea-
sure throughput (rate of bits successfully decoded by the receiver)
and buffering (time elapsed between scheduling a data grant for
encoding and actually delivering it over the air). Fig. 17 compares
the network throughput achieved by the baseline approach and
by Nuberu with different settings of 𝜆, and for different amounts
of computing resources allocated to the vDU’s encoder, which are
measured as the number of bits that are encoded by unit of time,
between 8 b/𝜇s and 200 b/𝜇s. As a reference, a dedicated Intel Xeon
core @ 1.9GHz provides an encoding performance of 200 b/𝜇s.

We first note that the baseline approach is inelastic: its through-
put collapses suddenly when its DU jobs exceed the available pro-
cessing time budget (see Fig. 8). In marked contrast, Nuberu pre-
serves high throughput irrespective of the available computing
capacity, providing elasticity upon computing fluctuations. Indeed,
Nuberu’s parameter 𝜆 serves to choose the desired trade-off be-
tween data buffering at the vPHY (shown by the right-most sub-
plot) and throughput. When 𝜆 = ∞, effectively disabling congestion
control, Nuberu is greedy and maintains maximum throughput ir-
respective of the computing capacity but incurs high buffering.
Conversely, lower values of 𝜆 help reduce buffering at the cost of
throughput when there is shortage of computing resources.
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Figure 17: Downlink throughput (left) and vPHY buffering
(right) with saturating load. Comparison between the base-
line and Nuberu under different computing capacities.

5.2 Congestion Control
Wenext evaluate the performance of Nuberu’s congestion controller.
To this aim, we use the same setup as before with an encoder’s
computing capacity equal to 12.5 b/𝜇s, and with 𝛼 = 3 and 𝜆 = 2.
Based on this, we run a set of experiments with different DL load
patterns and settings of 𝛽 , where the load is varied by changing the
duty cycle of an on-off generation process with no traffic during
the off period and saturating rate during the on period. We plot
in Fig. 18 the evolution over time of the throughput achieved for
the different loads and values of 𝛽 considered. Nuberu’s congestion
control effectively limits the data rate generated by the DU to avoid
congestion, as set by parameter 𝜆, when there are shortages of
computing resources. To illustrate this, the plot also depicts with
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Figure 18: Congestion control performance for different
loads and settings of 𝛽 . 𝛼 = 3, 𝜆 = 2. Colored lines showmean
throughput. Shades cover the area between the 10𝑡ℎ and the
90𝑡ℎ percentile. Dashed black lines represent the maximum
rate limit to avoid congestion as set by 𝜆 = 2.
dashed black lines the theoretical rate limit that achieves this for
𝜆 = 2. On the one hand, 𝛽 < 0.9 values are overly aggressive,
rendering highly unstable performance and low throughput. On the
other hand, 𝛽 > 0.9 results in slow convergence to adapt 𝑐𝑤𝑛𝑑𝐷𝐿
to the optimal value when the load is bursty (< 1), which generates
a data rate that violates the buffer constraint set by 𝜆 = 2. We hence
use {𝛼 = 3, 𝛽 = 0.9} in all our experiments as indicated by Table 2.

To provide more insights about the throughput-delay trade-off
achieved by the congestion controller, we run more experiments
with additional DL load patterns. For each pattern, we measure
the mean throughput and one-way end-to-end delay (between end-
user applications synchronized with IEEE 1588 protocol [10]) over
1-second windows for Nuberu (𝜆 = 2, 𝛼 = 3, 𝛽 = 0.9) and the
baseline, and map each result in the throughput-delay plot shown
in Fig. 19. To ease visualization, we only plot a small subset of
the results and a curve fitting all of them. As shown by the figure,
Nuberu substantially outperforms the baseline despite the use of
buffering to accommodate computing jitter. Conversely, the baseline
approach frequently loses synchronization, hence providing overly
low throughput and, as a result, high end-to-end delay.
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Figure 19: Throughput-delay trade-off for different loads.

5.3 Uplink (Early HARQ)
Different combinations of SNR, MCS, TB size, and computing ca-
pacity have different impact on E-HARQ. To assess this, we test
different Π𝛾 (see Algorithm 1) and show in Fig. 20 its accuracy (ratio
of predictions made right, at the top), and its ratio of false positives
(bottom subplot). The latter is relevant because a false positive,

γ1 = 200, γ2 = 200
γ1 = 400, γ2 = 200
γ1 = 600, γ2 = 200
γ1 = 600, γ2 = 400

0.00 0.25 0.50 0.75 1.00
Accuracy

0.00 0.25 0.50 0.75 1.00
False Positives

Figure 20: E-HARQ accuracy and false positive rate for dif-
ferent 𝛾 settings, and for different combinations of MCS, TB
size, SNR, and computing capacity.

i.e., acknowledging a TB that is not decodable, incurs substantially
higher cost because the TB has to be recovered by higher layers
such as RLC or even TCP (if RLC does not use ARQ). This exercise
lets us explore the parameter space of our E-HARQ approach and
choose the most appropriate setting. Although {𝛾1=600, 𝛾2=400}
reaches a negligible false-positive ratio (∼0.04%) and high accuracy
(95%), we have selected {𝛾1=400, 𝛾2=200} because it provides 99%
accuracy while keeping low a false-positive ratio (∼0.1%).
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Figure 21: Maximum computing latency supported by Nu-
beru’s E-HARQ given a target accuracy.

Certainly, the actual performance is determined by the (extrin-
sic) information available before the MVSF deadline in each job. To
get additional insight on this, we present in Fig. 21 the minimum
computing capacity required by the decoder to attain a given target
of accuracy from 50% to 99% for 3 different SNR regimes (low, with
SNR below 20 dB, medium, with SNR up to 25 dB, and high), and
6 different MCS indexes (14 to 19) from 3GPP. As a baseline to
compare against, we plot with a red line the computing capacity re-
quired to run up to 10 decoder iterations in our time budget, which
is the usual threshold to decide on the decodability of a TB when
E-HARQ is not employed. As a reference, a dedicated Intel Xeon
core @ 1.9GHz provides a decoding performance of ∼80 b/𝜇s per
iteration. To attain high accuracy during medium and high SNR
regimes, we only require sufficient computing resources so our
decoder can process ∼2.5 bits/𝜇s (400 ns per bit). The rest of MCSs
alternate between high and mild processing requirements depend-
ing on the accuracy target and MCS during low SNR conditions.
Remarkably, our E-HARQ mechanism alone lets us reduce by 35x
the amount of computing capacity required to carry out the task.

5.4 Single-vDU network capacity region
We now characterize empirically the network capacity region of one
vDU under high SNR regimes, which generate the highest compu-
tational load and are a worst case. To this end, we measure DL and
UL throughput for a wide set of UL/DL network load combinations.
We also vary the amount of computing resources allocated to the
encoder and the decoder by scaling them down to 𝑘 · 𝑐0, where 𝑐0 is
the nominal encoding/decoding capacity of a dedicated Intel Xeon
core @ 1.9GHz, and 𝑘 ≤ 1. Our results are shown in Fig. 22 for
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Figure 22: Network capacity region of Nuberu and our base-
line. Different computing capacity settings equal to 𝑘 · 𝑐0,
where 𝑐0 is the nominal encoding/decoding capacity of a ded-
icated Intel Xeon core @ 1.9GHz.

Nuberu, tuned with and without E-HARQ and 𝜆= {2,∞}, and for
our baseline approach. To ease visualization, we only present the
region envelop and a few experimental points around it.

Obviously, when we have dedicated and over-dimensioned com-
puting capacity (𝑘 = 1), the networking capacity region shows
a rectangular shape where uplink and downlink reach maximum
spectral efficiency. However, if we reduce the system’s computing
capacity by 𝑘 = 1/2.5, Nuberu 𝜆 = ∞ (in purple line) preserves the
highest theoretical spectrum efficiency. Moreover, Nuberu 𝜆 = 2
(in dark blue line) provides a much higher maximum aggregate
throughput than our baseline approach (yellow line). Most of this
capacity gain comes from E-HARQ, as it can be seen from the fact
that Nuberu falls to the baseline’s performance when E-HARQ is
disabled (green line). As we reduce the amount of computing re-
sources (𝑘 = 1/5 and𝑘 = 1/5.5), the baseline’s capacity region keeps
shrinking while Nuberu sustains high downlink capacity (even if E-
HARQ is disabled) as well as uplink (unless E-HARQ is disabled and
the computing conditions are the harshest, i.e., 𝑘 = 1/5.5). Remark-
ably, with 𝑘 = 1/5.5, which represents an 80% computing resource
reduction over the best scenario for the baseline approach, Nuberu
reaches ∼95% of the maximum theoretical spectrum efficiency.

5.5 Shared computing resources
In the previous sections, we have characterized the performance of
a single vDU instance with Nuberu (and the baseline). In the follow-
ing, we keep the maximum processing speed of our experimental
platform (which attains 200 encoded bits/𝜇s and ∼ 80 decoded
bits/𝜇s per iteration), and deploy multiple vDU instances sharing
the common computing resource (five Intel Xeon cores @ 1.90GHz).

Specifically, we let one vDU under test (Nuberu or Baseline) com-
pete for resources with a variable number of competing vDUs that
generate DU jobs with a duration that follows a normal distribution
with average 1 ms and standard deviation 0.25 ms. Fig. 23 depicts
the UL and DL throughput (left and right subplots, respectively)
when the vDU under test uses Nuberu with the same settings used
before (blueish and green bars), and when it uses the baseline ap-
proach (yellow bar), for different scenarios where the number of
competing vDUs spans between 0 and 10.

Nuberu’s performance remains high in all scenarios. Only when
E-HARQ is not employed, UL throughput drops approximately 5%
per competing vDU. When using E-HARQ, UL throughput only
drops 10% when 𝜆 = 2 and ∼2% when 𝜆 = ∞. Conversely, Nuberu
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Figure 23: Network performance for a variable number of
vDUs contending for computing resources.

attains the maximum spectral capacity in the DL channel regardless
of the number of contending vDUs. In marked contrast, the per-
formance of our baseline approach drops significantly with every
competing vDU: UL performance collapses when it competes with
more than 1 vDU, and DL throughput only reaches 27% with 2 com-
peting vDUs and < 5% with a higher amount of competitors. This
result provides strong evidence of the elasticity and high efficiency
of Nuberu in shared cloud environments.

5.6 Multiple-vDU capacity region
The results shown above validate Nuberu’s superior performance
when sharing a platform with different amounts of computing inter-
ference. However, they do not evaluate how the available computing
capacity is distributed among different instances of vDU, i.e., fair-
ness. Consequently, we conclude our evaluation with an empirical
characterization of the network capacity region of a system with
two vDUs (vDU 1 and vDU 2) sharing the same computing plat-
form. Both vDUs are homogeneous in this case, that is, they both
implement Nuberu (with and without E-HARQ, and for 𝜆 = {2,∞})
or the baseline architecture. Different from the experiments of §5.5,
which showed competing vDUs with fixed load, we now test a wide
set of UL and DL network load combinations; and we reduce the
encoder/decoder processing speed of our platform by a quarter
(𝑘 = 1/4 in §5.4) to study harsh computing conditions.

Fig. 24 depicts the throughput performance achieved by vDU 1
versus the obtained by vDU 2 for both DL (left plot) and UL (right
plot) directions. Like in Fig. 17, we only present the capacity frontier
with fitting lines and a few experimental points around it to simplify
the plot. “Nuberu (𝜆 = ∞)” maximizes the throughput of both vDUs
in both DL and UL; “Nuberu (𝜆 = 2)” maximizes UL performance
and roughly halves DL throughput to control buffering at the PHY;
and “Nuberu (𝜆 = 2, no E-HARQ)” further halves UL throughput to
avoid dropping UL data that cannot be decoded on time. In contrast,
while the baseline approach reduces DL throughput in a similar way
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Figure 24: Network capacity region in a 2-vDU scenario. En-
coder/decoder processing speed equal to 𝑐0/4, where 𝑐0 is the
nominal speed of a dedicated Intel Xeon core @ 1.9GHz.
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as Nuberu when 𝜆 = 2, its UL performance is roughly a third of the
maximum spectrum capacity. This is because the users frequently
lose synchronization with the DUs and cannot communicate while
re-attaching. Importantly, this result proves that the individual
performance gains provided by Nuberu do not come at the cost of
fairness but because of a more efficient pipeline design when there
are shortages of computing resources.

6 RELATEDWORK
Network Function Virtualization (NFV) has received a lot of atten-
tion over the years [14, 21, 24, 37, 39]. NFP [37] exploits parallelism
across sets of network functions to mitigate resource contention.
ResQ [39] shows how to increase performance isolation by using ap-
propriate processor cache isolation and I/O buffer sizes. PicNIC [21]
opportunistically enforces isolation by applying a set of techniques:
CPU-fair weighted fair queueing at receivers, congestion control,
and admission control with shaping. Only last year, Microscope [14]
and SLOMO [24] introduced performance diagnosis tools for net-
work functions. The literature is rather vast. However, the focus
has conventionally been on middleware, such as L2/3 forwarders,
load balancers, firewalls, IDSs, VPNs, and others. Moreover, because
metrics such as tail latency are particularly relevant in these appli-
cations, substantial effort has been devoted to the design of generic
scheduling frameworks that can balance computing efficiency and
latency performance [26, 29]. However, these approaches, though
relevant, they alone do not solve the problem addressed in this
paper since (𝑖) the dependencies between DU tasks within each DU
job impose constraints to parallelize DU tasks in different proces-
sors to expedite DU jobs, and (𝑖𝑖) while these techniques can reduce
job latency, they cannot guarantee hard deadlines, which as we
showed in this paper, is a requirement to provide reliable DUs.

Virtualized RANs are gaining substantial interest among mo-
bile stakeholders [7, 18, 33] and academia [11]. Solutions such as
Orion [11] or that in [27] enable the virtualization of radio resources
efficiently but do not address problems related to the virtualiza-
tion of the computing tasks involved in a DU pipeline. vrAIn [5]
and others [4, 40] propose machine-learning-based controllers to
optimize the allocation of radio and computing resources at long
timescales (seconds). Though these solutions are useful for network
slicing, they do not provide reliability to vDUs during (quick) fluc-
tuations of computing capacity. Indeed, (pre-)commercial vDUs em-
ploy dedicated hardware accelerators assisting the baseline pipeline
presented in §2 to provide reliability [7, 18, 33]. There is substan-
tial work in this direction, e.g., [3, 6, 17]. Worth highlighting are
Intel FlexRAN [36] and NVIDIA Aerial [34]. These are L1 solu-
tions used in commercial vRANs, which can accelerate operations
such as FEC using dedicated FPGAs (the former) and GPUs (the
latter). However, they are closed-source and due to the lack of pub-
licly available information, we cannot compare them with Nuberu.
FlexRAN does provide openly its libraries to perform FEC [19],
one important operation within a DU that we have used in our
experiments of Fig. 4. Although these libraries improve the latency
of important operations involved in some DU tasks, they are not
enough to provide carrier-grade reliability in shared computing
platforms because they do not guarantee meeting the hard deadline
of DU jobs in these environments. A remarkable piece of work is
Agora [9], which builds on FlexRAN’s open libraries to provide

a high-performing pipeline to process UL and DL data carried by
PUSCH and PDSCH that is suitable for multi-core CPU platforms.
However, like FlexRAN’s open solutions, Agora does not implement
a complete DU pipeline, requires dedicated platforms to provide
reliable performance, and does not propose solutions to guarantee
reliable full-fledged DU operation in shared platforms.

The use of specialized hardware for compute-intensive and repet-
itive tasks, such as FFT or FEC, seems unavoidable for carrier-grade
performance. However, in line with the view of O-RAN, a carrier-
led initiative, we believe that successful RAN virtualization has
to go through shared pools of computing resources as depicted in
Fig. 1 (see, e.g., [28]) to provide affordable and flexible solutions.
The cost is however non-deterministic computations that lead to
the unreliability problems presented in this paper. Latency-driven
task schedulers and optimized baseband libraries like the ones
mentioned above are obviously important because they expedite
operations such as FEC. However, they are not enough to guarantee
meeting the latency constraints of DUs and, consequently, they are
not enough to provide carrier-grade reliability in non-deterministic
computing platforms such as shared clouds. We have shown in
this paper that a re-design of the baseline DU pipeline is required
to achieve this goal. To the best of our knowledge, Nuberu is the
first approach to design a complete DU pipeline that is specifically
suitable for non-deterministic (e.g. shared) computing platforms.

7 CONCLUSIONS
Shared computing platforms are particularly relevant for the suc-
cess of RAN virtualization as they alleviate the cost incurred by
dedicated platforms and provide flexibility. However, research has
shown that resource contention in shared computing infrastruc-
ture provides non-deterministic performance and tail latency. The
Distributed Units (DU) of virtualized RANs are especially sensitive
to this problem due to hard time constraints to execute the DU
pipeline. In this paper, we showed that a re-design of the baseline
DU pipeline is required to provide carrier-grade reliability in these
platforms. We then proposed Nuberu, a novel DU design specifically
engineered for 4G and 5G vRANs that are virtualized over clouds
of shared resources with constrained and/or fluctuating computing
capacity. To the best of our knowledge, Nuberu is the first full-
fledged DU design that addresses the aforementioned reliability
problem. Nuberu has one key objective: preserve synchronization
with the users to provide reliability regardless of computing fluctua-
tions. Provided that, Nuberu employs congestion control, predictive
HARQ, and jitter-absorbing buffers to maximize performance under
compute resource shortages. Finally, a comprehensive evaluation
of Nuberu has been conducted in an experimental proof-of-concept.
Our results show that Nuberu dramatically improves the robustness
of vRANs in harsh computing environments over state-of-art solu-
tions, e.g., providing as much as ∼95% spectrum efficiency when
computing resources are reduced by ∼80%.
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