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Abstract—Virtualized radio access networks (VRAN) are
emerging as a key component of wireless cellular networks, and
it is therefore imperative to optimize their architecture. vRANs
are decentralized systems where the Base Station (BS) functions
can be split between the edge Distributed Units (DUs) and Cloud
computing Units (CUs); hence they have many degrees of design
freedom. We propose a framework for optimizing the number
and location of CUs, the function split for each BS, and the
association and routing for each DU-CU pair. We combine a
linearization technique with a cutting-planes method to expedite
the exact problem solution. The goal is to minimize the network
costs and balance them with the criterion of centralization,
i.e., the number of functions placed at CUs. Using data-driven
simulations we find that multi-CU vRANSs achieve cost savings up
to 28% and improve centralization by 77 %, compared to single-
CU vRAN:Ss. Interestingly, we see non-trivial trade-offs among
centralization and cost, which can be aligned or conflicting based
on the traffic and network parameters. Our work sheds light
on the VRAN design problem from a new angle, highlights the
importance of deploying multiple CUs, and offers a rigorous
optimization tool for balancing costs and performance.

I. INTRODUCTION
A. Background

The Cloud Radio Access Network (C-RAN) has emerged as
a promising solution for building low-cost high-performance
RANSs in next generation wireless networks. This idea has
been motivated by the need to increase the densification of
cellular networks, and is enabled by the softwarization of these
systems [2]. Namely, today the rigid single-unit Base Stations
(BS) are gradually replaced with softwarized implementations
that can run even in commodity servers in different locations.
In this context, the BS operation is essentially a chain of
functions, each one performing specific tasks after the wireless
radio signal is sampled.! This technological advancement has
allowed pooling the BS functions in cloud servers within the
RAN, known also as Cloud Units (CUs), aiming to reduce
their execution cost (using more efficient servers) but also
to improve the network performance through its centralized
control. For instance, the co-location of functions of different
BSs enables Coordinated Multi-Point transmissions, supports
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"Two such platforms are OpenAirlInterface (https://www.openairinterface.
org/) and srsLTE (https://www.srslte.com/).
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Fig. 1: RAN Architectures. (a) D-RAN places all functions at the
BSs and transfers only the payload to EPC; (b) C-RAN places all
functions at the cloud units; (¢) VRAN selects possibly a different
split for each BS, placing functions both at the DUs and CUs.

dynamic multi-cell spectrum management and also cross-cell
interference control [3], [4].

The last few years there have been systematic efforts
towards standardizing, and hence adopting, C-RANs [5], [6].
However, several technical issues still need to be carefully
addressed before we can reap the benefits of these systems.
One of the main open challenges is how to actually design
the architecture of C-RANSs. This is a difficult problem for
many reasons. First, fully centralized RANs are typically
not implementable [7] as they require high-capacity fronthaul
networks that are not available in RANs, and are immensely
expensive to deploy from scratch. This has motivated a shift
from pure C-RAN solutions to flexible architectures where
only a subset of the BS functions are placed at CUs. Indeed, it
is technically possible to support different functional splits, by
selecting which functions will be hosted at CUs and which will
be kept at the distributed units® (DUs). The term virtualized
RAN (VRAN) has been coined to describe these architectures
which, in their most flexible version, allow a different split
for each BS [8]. A schematic example of the different RAN
architectures is presented in Fig. 1.

However, selecting the level of centralization (how many
functions to place at CUs) for each BS is an intricate problem.
Each split creates different computation load for the CUs and
DUs, and also different data flows to transfer between these
two ends. In some cases, one needs to deploy multiple CUs
to increase the centralized functions. This comes at a cost

2Clarifying the terminology: in VRANs each BS consists of the CU, DU,
and the Radio Units (comprising the antennas and A-D converters); and the
DUs are typically co-located with the RUs at the network edge, see Fig. 1.
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and thus it is necessary to carefully decide the number and
deployment of CUs, and which DUs each of them will serve.
However, the CU-DU assignment decisions are affected by
the functional split of each BS. While initially the VRAN
fronthaul was designed using point-to-point connections, the
new Xhaul architecture consists of heterogeneous packet-
switched links that share multiple flows [9]. This approach
is cost-effective, yet compounds the VRAN design problem as
one has, additionally, to decide the routing paths.

Our goal here is to tackle the vVRAN design problem in this
general form by optimizing jointly the number and location
of CUs, the assignment of DUs to CUs, the functional split
for each BS and the routing. These decisions are being made
towards minimizing the operating expenditures of the network,
subject to available computing and network resources. Going
a step further, we examine if, and when, a trade off arises
between minimizing costs and maximizing the function cen-
tralization, and how one can identify and achieve a sweet spot
among these criteria.

B. Methodology & Contributions

We formulate a mathematical program that optimizes the
vRAN design by using a measurement-based 3GPP-compliant
model. The objective is to minimize the VRAN function
execution and routing costs. Our framework is general and
can be tailored to different networks and cost functions. For
instance, we can use load-dependent computing or routing
costs. Besides, we extend it to consider the important criterion
of centralization, i.e., the number of functions placed at CUs.
Using scalarization, we combine the two criteria and optimize
them jointly, where a weight parameter 7 € [0, 1] determines
their relative importance. This approach allows operators to
design their networks giving priority either to ensuring low-
cost implementation or high performance. As we will see,
these criteria are not always aligned, but there is room for
jointly orchestrating them.

The resulting formulation is a Mixed-Integer Quadratic
Linear Problem (MIQLP), with prohibitive complexity in large
networks. Our first finding is that the multi-cloud VRAN
design problem is NP-hard to solve optimally, and, moreover,
cannot be approximated within any constant factor. We prove
this result through a polynomial-time reduction from the
unsplittable hard-capacitated facility location problem [10]. In
light of this result, we propose a novel two-stage solution
process that makes no compromises in terms of optimality.
First, we transform our problem to a Mixed-Integer Linear
Problem (MILP) by linearizing its constraints [11], and then
employ a cutting-planes method based on the seminal and
well-known Benders’ decomposition technique [12]. We prove
that this approach delivers an exact solution; and, interestingly,
maintains a feasible solution during its execution, which allows
to terminate it earlier at the expense of optimality.

We evaluate our framework using measurements and a range
of networks, including actual operational RANs. Following
a detailed analysis we find that the benefits when departing
from single-CU deployments can be as high as 24% when
using 8 CUs, or 15% for 4 CUs, but these gains diminish as
we add more CUs. This reveals a threshold effect, and the

need to optimize the placement in order to avoid excessive
deployment costs. We find that a multi-Cloud vVRAN can
support higher centralization (up to 77%) even for high routing
costs, compared to single-CU VRANs. And we observe that it
is preferable (up to 26% cost savings) to have multiple CUs
with small computing capacity than few CUs with larger ca-
pacity. Our analysis shows that these findings are qualitatively
persistent across different networks.

Furthermore, we launch a battery of tests to explore the
Pareto fronts of the joint cost - centralization problem. We
optimize the VRAN design for different 7 values (tuning
parameter) and network architectures. We find that these two
criteria are not always aligned; and even when they are, a
careful selection of n is needed to avoid unnecessary losses
to either of these dimensions. In certain cases, we can find
sweet spots and, e.g., increase the centralization by 320% by
accepting a small cost increase of 15%. Yet, in other scenarios
the trade offs are less asymmetric and the operator needs to
make hard choices between costs or performance; or invest in
CU deployment. Indeed, we find that adding more CUs can
change the Pareto front, not only expanding it (as one would
expect) but also reshaping it and hence creating opportunities
for joint optimizations. Our contributions can be summarized:

e We study the problem of multi-cloud vVRAN design,
considering multiple CUs, CU-DU assignments, functional
split and routing. Our model takes into account some of
the key practical dimensions of this network design problem;
and considers jointly the criteria of centralization and cost, a
relation that was hitherto overlooked.

e The complexity of the formulated optimization problems
is characterized, and a rigorous solution framework is devel-
oped. Combining linearization, decomposition, and an iterative
cutting plane method, we propose an algorithm that returns an
exact solution, but can be also terminated in a sub-optimal
point if execution time is of interest.

e In a series of evaluations using 3GPP-compliant param-
eters and real and synthetic RAN topologies we investigate:
how the availability of CUs affect the VRAN cost; the impact
of routing cost and traffic load; robustness of findings on
VvRAN topology; and we characterize the Pareto front of cost
and centralization. Our findings reveal fresh opportunities for
optimizing VRANS in terms of either criterion.

Paper Organization. In Section II we position our contri-
butions with respect to prior work. Section III presents the
technical background of the problem, e.g., 3GPP standards,
and introduces the system model. We formulate the minimum
cost VRAN design problem and study its properties in Section
IV; while Section V develops the algorithmic framework for
solving the problem. In Section VI we formulated the extended
problem which balances costs and centralization, and discuss
its properties and solution methods. A trace-driven numerical
evaluation is presented in Section VII for a variety of networks
and datasets, and we conclude in Section VIII.

II. RELATED WORK

The idea of C-RAN was followed by the suggestion for
implementing the BS functions in common hardware (cloud-
ification) [13], where different functional splits are possible



Split Point UL BW (Mbps) Delay (ms) Description
S0 None A 30 D-RAN: all functions placed at the DU
RRC, PDCP, and upper layer functions are deployed at CU; RLC, MAC,
SI PDCP/RLC A 30 and PHY functions at DU
S2 MAC/PHY 1.02A+ 1.5 2 MAC and upper layer functions at CU; PHY and RF functions at the DU
S3 PHY / RF 2500 0.25 All functions at CU except RF layers

TABLE I: Data and delay requirements of our splits, when the traffic load is A Mbps.

[14]. A detailed study of the split specifications can be found
in [15], while [16] and [17] analyzed the split requirements
and performance gains. However, only few works optimize
the split selection, cf. [18]. The authors in [19] select splits
to minimize inter-cell interference; [20] and [21] consider
adaptive splits; [22] optimizes the splits for RAN slicing; and
our previous work [7] optimized jointly the routing and splits.
This is very important as VRANs use a shared packet-based
network instead of dedicated CPRI links, and we refer the
reader to our pertinent feasibility study [9].

The above works do not consider multiple CUs, nor the need
to determine their location; yet, this is a key issue in VRAN
design. [23] explores min-cost splits in tree networks with
fixed CUs; while [24] selects the CU locations and formulates
(but does not solve) a min-cost design problem. [25] and [26]
consider multiple CUs but do not optimize routing. In [27] and
[28] the DUs are assigned to co-located CUs aiming to reduce
energy costs, thus the assignment decisions do not affect
routing. Finally, our previous work considered fixed CUs [29].
Here, we decide the CU deployment by selecting their number
and location, along with routing and assignments. Besides, we
explore the trade-off between costs and centralization, where
the latter is a good proxy for vVRAN performance, see Table
III. Interestingly, we find that these criteria are not always
aligned, and explore how we can jointly orchestrate them.

Modeling-wise, the problem is reminiscent to server place-
ment [30], Virtual Network Functions (VNF) chain embed-
ding [31], network slicing [32], and wireless edge computing
problems [33], [34]. However, there are also significant dif-
ferences with those problems. Namely, the BS operation can
be modeled as a varying-size chain of functions which can be
deployed in different ways (splits). And each split has different
bandwidth and delay requirements, which in turn affect which
routing paths are eligible for each split. Moreover, the VRAN
functions differ in their computing and memory requirements.
Finally, each split brings different performance gains and ca-
pabilities to the network. On top of these distinct aspects of the
VRAN splitting problem, we decide the number of CUs, which
brings our formulation closer to discrete location problems. In
fact, we prove that this is harder than the unsplittable hard-
capacitated facility location problem [10], and hence does not
admit any constant-approximation algorithm unless we violate
the capacities. Besides, the existence of shared routing paths
adds another layer of complexity and makes it a joint facility
location-network design problem [35], [36]. In light of these
observations, we opt to follow a different solution approach.

As a network design problem, suboptimal VRAN solu-
tions have immense long-term cost impact. Hence, we avoid
heuristic or approximation algorithms and employ the seminal

technique of Benders’ decomposition [12] that returns the
optimal solution. This well-known method is extensively used
in operations research [37], and has been recently employed
in communication networks to design sensor networks [38],
transmission power control algorithms [39], and routing in
optical networks [40], among others. To the best of our
knowledge, this is the first work using Benders’ technique
for RAN design, and to that end we formulated carefully
the problem so as to avoid non-linearities and render it
amenable to this decomposition. Finally, it is worth mentioning
that machine-learning approaches, e.g., see [33], [34] and
references therein, can be useful for this problem when there
are unknown parameters, albeit they do not offer, in general,
optimality guarantees.
III. SYSTEM MODEL
A. Background and Preliminaries

We rely on 3GPP terminology [6] and the seminal white
paper [15] for our model. A key block of each base station
is the Base Band Unit (BBU) that hosts all functions except
the radio signal reception/transmission which is implemented
by the Radio Unit (RU). With the advent of C-RAN, the
BBU functions are split into the Centralized (or, Cloud) Unit
(CU) and the Distributed Unit (DU). Hence, while in previous
generations of cellular networks a BS was composed of a RU
and BBU, in vRANs a BS comprises the CU, DU, and RU,
Fig. 1. Both CU and DU are computing equipment, but the
CUs are typically bigger servers while the DUs are smaller
units placed close to the RUs. The CUs and DUs host different
functions based on the selected split, cf. [14], [20], where the
prevalent splits are shown in Table I; see also [6]. Going from
SO to S3, more functions are placed at CUs. This increases the
cost savings as, naturally, the CU servers are more efficient
than the computing units of DUs®. Moreover, centralization
increases network performance. For example, split S1 allows
some L3 and L2 functionalities to be implemented in the
same hardware; split S2 supports CoMP and effective MIMO
implementation; and split S3 offers opportunities for power-
saving, increases computation efficiency and enhances CoMP
reception by combining uplink PHY levels.

On the other hand, centralizing functions increases the data
load that needs to be transferred to CUs. For example, the load
increases from A\ Mbps (payload) in S1 to 2.5 Gbps in S3 for
the considered configuration®, see Table 1. Similarly, the delay

3 According to [16], a cloud-radio access network require approximately
from 10% to 15% less capital expenditure per square kilometer compared to
traditional fully decentralized deployments.

4Scenario: 1 user/TTIL, 20 MHz bandwidth; Downlink: MCS (modulation
and coding scheme) index 28, 2 x 2 MIMO, 100 Resource Blocks (RBs), 2
transport blocks of 75376 bits/subframe; Uplink: MCS 23, 1 x 2 SIMO, 96
RBs, 1 transport block of 48936 bits/subframe.



Fig. 2: The BS functions can be split between the DU and one of
the CUs. DU; implements a full-stack BS (no split) and route its
traffic directly to EPC. DUy selects a split and sends its traffic to
CU, which further routes it to EPC. CUs have high-capacity links to
EPC; and some CUs might not be activated (e.g., CU3).

window within which the data transfers among the CU and DU
must be completed changes by orders of magnitude, down to
250 us for S3. These requirements restrict the paths one can
use to connect the DUs and CUs, and might also increase the
routing cost, hence offseting the computation cost savings.

Focusing on splits S1, S2 and S3, the BS operation can be
modeled as a function chain (fy — f1 — fo — f3). Function
fo encapsulates the RF-related operations (e.g., A/D sampling)
and is placed always at DUs, while f5 is associated with PDCP
and upper BS layers and can be placed at DU for D-RAN, or
at CU for vRAN. Also, functions f; (PHY) and f> (RLC and
MAC) can be deployed either in CUs or DUs depending on the
RAN configuration. The current standards suggest a packet-
based network with links that are shared by the DUs, instead of
the point-to-point expensive CPRI links [15]. This architecture
reduces the routing cost, but compounds the routing policy.
Finally, the CUs are assumed to be directly connected to the
network core through high-capacity (e.g., optical) links; see
Fig. 2 for an example of our system.

B. Model

Network. The RAN is modeled with a graph G = (Z,€)
where the set of nodes Z includes the subsets: N of the N =
|IN| DUs, L of the L = |£] routers, and M of the M = | M|
locations for the CUs; and the core node (EPC) that we index
with 0. We define Mo=MU{0} and assume that M << N.
The nodes are connected with a set £ of links and each link
(4,7) has average data transfer capacity of ¢;; (Mbps). DU-n is
connected to each CU-m with a set of paths P,,,,, and to EPC
with a set of paths P,o. We define the set P, = Uff:lpnm
of paths connecting all DUs to CU-m; and denote the set of
all paths with P = U,,,e a1, Pm- Each path pj, introduces end-
to-end delay of d,, (secs). The BS functions are implemented
in servers using virtual machines (VMs). We denote with H,
and H,, the processing capacity (cycles/s) of DU-n and CU-
m, respectively, where naturally we assume that H,, > H,;
and define as p1, p2 and p3 the processing load (cycles/Mbps)
per unit of traffic of functions f;, fo and f3, respectively.

Demand & Cost. We focus on uplink where the users
served by each DU-n, n € A/, generate an aggregate data flow
of \,, > 0 (Mbps) . Hence, the RAN needs to admit, route and

Notation  Definition

N,N,n Set of DUs, number of DUs, DU index

M, M, m  Set of CUs, number of CUs, CU index
Prm (Pm)  Set of paths between DU n (all DUs) and CU m

Cij Bandwidth (Mbps) of link between nodes ¢ and j

dp,, End-to-end delay of the path px in seconds
n Traffic flow from DU-n in Mbps
H, H, Processing capacity (cycles/s) of DU-n and CU-m
p1,p2,p3  Processing load (cycles) per Mbps of fi, f2, f3
Am, bm Cost of VM instantiation and computing at CU m
A, Bn Cost of instantiation and computing at DU n
Ck Routing cost of path k (monetary units per Mbps)
Cd Routing cost per kilometer per Mbps

TABLE II: Notation table

serve N different flows. The execution of the VRAN functions
is considered more cost-effective when they are implemented
at CUs, as opposed to DUs [16]. This is due to actors such as
the highest computing capacity and improved energy efficiency
of the CU servers compared to the smaller, and thus less
efficient, DU servers [41]. Our model is general and does not
make any strict assumptions on the relative computing efficien-
cies of CUs and DUs. Following the literature for modeling
the processing costs in virtual machines, we denote with a,
and b, the VM instantiating cost (monetary units) and the
computing cost (monetary units/cycle) at CU-m, respectively.
The former is fixed and paid for any VM that is installed,
such as cooling costs, one-off expenses for leasing VMs from
third parties, minimum resources required for starting the
VM, and so on. On the other hand, b,, models the operating
expenditures which depend on the load, e.g., the energy spent
due to processing. We therefore define a = (a,,m € M)
and b = (b,,m € M). The respective costs for the N
DUs are o = (ay,,n € N) and B = (8,,n € N). Finally,
( is the routing cost (monetary units/Mbps) for each path
pr € P, and we define ¢ = (C1,...,{p|). Such costs might
arise because the network links are leased from third-parties,
or they can model the (average) expenditures of the network, or
the amortized investments for maintaining the network links.
The flows are routed to CUs and then to EPC through high-
capacity links, or directly from the DUs to EPC in case no
splitting has been decided (D-RAN implementation). Table II
summarizes the model parameters.

C. Problem Statement

The objective is to minimize the operation costs by jointly
optimizing the following decisions. Deployment: which of the
available locations to use for deploying CUs? Assignment:
which CU should serve each split DU? Placement: how to
split the functions fi, fo, f3 of each BS? Routing: how to
route the data from the DUs to CUs? These decisions are
inherently coupled, and this raises interesting trade-offs. Plac-
ing the functions at DUs reduces routing costs but increases
computing costs due to the less-efficient DU servers. On the
other hand, centralizing more functions reduces computing
costs, but deeper splits restrict the routing options due to
their tighter delay and bandwidth needs. Also, each DU-CU
assignment affects the number of eligible paths for every other
DU since the network links are capacitated; and similarly,



the CU computing capacity couples the function placement
across different DUs. All these decisions are conditioned on
the number and location of the CUs. Clearly, as more CUs
become available the RAN design space increases and, in turn,
allows more cost-efficient configurations. However, this effect
depends on the network topology and load, and deploying CUs
comes at a cost that must not exceed the anticipated savings.

IV. PROBLEM FORMULATION

A. Decision Variables & Constraints

Function Placement. We denote with z1,, 22, € {0,1}
the decisions for deploying f; and f5, respectively, to
DU-n. Similarly, y1nm,¥Y2nm € {0,1} decide the deploy-
ment of these functions at CU-m. We define the func-
tion placement vectors for all DUs w.r.t. CU-m as =, =
(Z1n :n EN), T2 = (2n, : n EN), Y1 = WYinm : 1 EN),
Yom = (Y2nm : 1 € N). We further define the vectors y; =
(Y1m :m € M) for fi, y2 = (Y2m : m € M) for fo, and
the overall decision vectors @ = (x1;22) and y = (y1;Y2).
The function placements are coupled. Namely, f; cannot be
deployed at a CU unless f> is also placed there; while fy can
be at an DU only if f; is already placed there [7], [15], [42].
Hence, we obtain the following chaining constraints:

YneN,meM. (1)

Yinm S Y2nm, Ton S Tin,

Also, duplicate deployments of each function should be pre-
vented in order to enforce the consistent operation of every
BS chain, i.e.,

Tin+ Z Yinm = 1a Ton+ Z Yonm = 1, Vn € N (2)
meM memM

CU Deployment. We assign DU-n to CU-m using the
binary variable z,,,, where z,,, = 1 if at least one function
of BS-n is deployed at that CU. The assignment matrix is
z = (Zpm € {0,1} : ¥n € N,m € M). We model the
configuration where f; and fy are at the DU-n, but f3 at the
CU-m, by setting y1,m = Yam = 1 — 2Znm = 0, hence we do
not define explicit variables for f3. Each DU can be assigned
at most to one CU:

Z Znm < 1,Vn € N7 3
meM
and Znm 2 Y2nm, VN € N,m eM, €]

must hold to preserve the BS chain. Finally, the function
placements and the assignment decisions need to ensure that
the computing capacity at each location is not exceeded, hence:

An (xlnpl +$27LP2+(1 _Z an)p3)§ H,, Vn € N7 (5
meM

Z An(yln,mpl +Yonmp2 + anp3) < Hp,, Yme M. (6)
neN

Data Routing. Variable r* = (Mbps) decides the amount of

nm

DU-n traffic that will be routed over path p; € P, to CU-m,

and we define r = (rk, € Ry : Vpy € Ppm,n € Nym €
/\/lo). The routing decisions must respect the link capacities:

oD rhll <y Vi) €€ ™)

neN pLEP,

where I}; =1 if link (i,j) is included in path p;, and I}, =0
otherwise; and also have to satisfy the flow requirements of
the splits:

Z rfim = ZnmSn(Tin, Ton), VR €N, me M, (8)

PrEPnm

where S,,(z1,,22,) is the data flow (Mbps) from DU-n,
which is determined by the load and the selected split of BS-
n, as summarized in Table I. In particular, we can use the
following succinct formula for expressing each split’s flow,
Sn(xlny x?n) -

210 (1.02Ay +1.5) =22, (0.02\,, + 1.5)+2500(1—z1,). (9)

Equations (8) ensure there is no data flow from DU-n to CU-
m unless the BS-m function f3 is placed at that CU, namely n
is assigned to m. This captures nicely the interaction between
assignment and routing, but creates a quadratic constraint term
as one can see by replacing the expression for .Sy, (21, T2n)-
Finally, in case of fully decentralized BSs (D-RAN, f3 func-
tions placed at the DUs), the flow needs to be routed directly
to EPC, and hence it should hold:

Z o= (1 _Zznm))\n7 Yn e N.

PrEPno m

(10)

We note that our model can be readily extended to include
routing decisions from the CUs to the EPC, which is required
if they are not connected with direct links as it is assumed.

Delay. The routing has to satisfy the delay requirements of
the selected split [15]. To enforce this, we classify the paths
into the following sets: P;fm C P with delay larger than
30 ms, me C Ppm with delay larger than 2 ms, and the
set of paths PC ~C P,,, with delay larger than 0.25 ms.
There is also a set of paths with delay less than 0.25 ms for
which we do not need to introduce notation. Clearly, it holds
PA CPB CPC . eg.,apathin PE (with delay > 2
ms) belongs also to set Pt (its delay is also > 0.25 ms).
Observe that this classification follows the delay thresholds of
splits [15], shown in Table I. Using these sets, we can ensure
that only paths that are eligible for each split are selected, by

using the following constraints:

Z TfLm < T(ylnm +y2nm),Vn €N7m c ./\/l’

PLEP,

Z TfLm < T(l — Yinm +y2nm),Vn EJ\/,m S M7 (12)

(1)

Z Tfim < T(2 — Yinm — y2nm)7vn eN,meM, (13)

pLEPS,

nm

where T'>>0 is a big-M type of constraint. Indeed, whenever
we select a split (a decision made by variables y1.,,, and ya,m)
then we can only use the paths with delays smaller than the
thresholds. We achieve this by enforcing the routing variables



to be zero for the paths that do not satisfy this condition.’

B. Minimum Cost vVRAN Design

The computation cost for each DU-n depends on which
functions it implements and what is the load )\, that it needs
to serve. Following [43], we define:

Vn(mlam27zn) = Qp (m1n+ Ton+ (1 - Z an))

meM
+ﬂn)\n(p1xln+ P2332n+ (1 - Z an)pB); (14)
meM
where zn, = (zZpm,m € M). The first term is a base

offset depending on the deployment platform and the type of
instantiation, and the second term is linear with the DU traffic.
We can consider other cost in our framework, e.g., power
consumption, which can be also modeled linearly following
[27] and [44]. Similarly, the respective cost for CU-m is:

Vm (y1m7 Yom, zm) = bmz )\n (plylnm +p2y2nm +P3an>

neN
+am Z (ylnm+y2nm + an) + Wm Z an>\n7 (15)
neN neN
where 2, = (2pm,n€ N), and wy, is the cost to use the CU

and route data from there to EPC; and Zn Znm =0 when CU-
m is not used. The cost of routing data from all DUs to CU-

m s Up(Tm) = D en DopiePum Cxrk . Putting the above
together, we define the minimum-cost VRAN design problem:

P: min Z V wl,wg,zn Z Vm<y1m7y2m7zm)
r,T,Y,2 el meM
+>
meMoy
s.t. (1) —(13).

This problem outputs the assignments z, the function place-
ments  and y, and the routing variables = for each network
graph G = (Z,€) and load A. Moreover, as it will become
clear in the sequel, one can use different computing and
routing cost functions, as long as they remain within the family
of convex functions®. We analyze the complexity of P next.

C. Complexity Analysis

We characterize the complexity of P through a polynomial
time reduction from the unsplittable hard-capacitated facility
location (UHCFL) problem.

UHCFLP. We are given a weighted graph G = (V, £) with
a set of vertices V and a set of links £. Set V is partitioned
further in two possibly overlapping sets J C V of facilities
and Z C V of clients. Each client 7 € Z has demand d;; and

SFor example, if we select split S2 (delay 2 ms) for the DU-CU pair (m, n),
we will set y1pm = 0 and y2n,m = 1 and the RHS of (12) will become 0,
hence the variables r m for all paths py € an (those with delay larger
than 2 ms) will also be 0.

SFor example, in case the computation costs are non-linear increasing
functions of the load, we will then have a convex instead of linear objective
function. Our framework will still deliver the optimal solution, since the
Benders’ decomposition technique has been generalized by Geoffrion [45]
to non-linear convex problems.

each facility j has activation cost v; and can serve demand
of w; units (hard capacitated). Serving client 7 by facility j
induces cost ¢;; per unit of demand, and naturally ¢;; = 0, Vi €
V. The costs satisfy the triangle inequality’; and each user is
served by a single facility (unsplittable). Our goal is to activate
a subset of facilities J* C J and assign clients to them using
arule 7 : Z — J%, so as to minimize the aggregate cost
> jegr Vit > icz diciz(iy While not exceeding their capacity,
ie., Zﬂ(i):j d; < Uj,Vj e J* .

The UHCFL problem is NP-hard to approximate within any
constant factor, unless the facility capacities are violated by
at least a factor of 3/2 [10]. Hence, the literature has been
focusing on bi-criteria approximation algorithms. We prove
next that our problem is harder than UHCFL.

Theorem 1. UHCFL problem can be reduced in polynomial
time to P, i.e., UHCFL <p P.

Proof. We consider the decision versions of the problems
which answer if a solution yields higher cost than a threshold.
We assume there is a unit-time oracle for the following
instance of our problem, which we denote PP: we can select
only the split® S1; there are N DUs with ),, demand and
H,, = 0,Vn capacity; M CUs with H,,,m € M capacity;
each DU n is connected to a subset of CUs, to each one
with a non-shared path of capacity ¢, > S, and low delay
so that it can support the split. Then, solving any UHCFL
instance is equivalent to solving P. To see this, notice that if
we can solve PP, then we can solve any UHCFL problem U by
setting: Z = N for the clients, F = M for facilities, Cij = Cp
for the serving costs of each link (4,5) € &, u; = w,, for
the activation cost of each facility j € J (the routing cost
from CU-m to EPC), and v; = H,, for the server capacities.
This way, answering the question if P exceeds the value @ is
equivalent to deciding if the solution of U exceeds some value
(2. In other words, we can solve U by invoking the oracle that
solves P. And it is straightforward to see that this reduction
is of polynomial time: for every deployed CU we activate the
respective facility, and for every assignment of a DU to the
CU we assign the respective client to that facility. [

In fact, our problem is much harder since we need to route
the traffic over links that are hard-capacitated and shared
among the different DUs. Such problems are known also
as facility location-network design problems, see overview
in [35]; or can be explicitly modeled as multi-level facility
location problems, cf. [36], where each link is modeled as a
facility, and the CU servers as the top-level facilities. Besides,
in P there are many different splits from which we need to
select exactly one. Concluding, since we have proved that there
is no constant approximation algorithm for our problem, we
follow a different solution strategy in the next section.

"This standard assumption requires cij +cjr > cik, Vi, j, k € V, and is
inherent in networks where the link costs represent delays or other spatial-
based parameters. If the assumption does not hold, the UHCFLP becomes
even more challenging.

8Equivalently, one can consider that all splits are possible, but the paths
can support only S1. The problem remains the same.



V. ALGORITHMIC FRAMEWORK

In order to solve this challenging problem we follow a two-
stage approach. First, we reformulate PP using a linearization
technique that replaces the intricate constraint (8). Then, we
decompose the problem and employ a cutting-planes method
that expedites the solution and finds, provably, an exact op-
timal point. Since this is an NP-hard problem, we naturally
do not to expect any guarantees on the convergence time.
However, as we will see in the numerical evaluation, our
solution approach is remarkably fast in practice.

A. Linearization of constraints

The product of two integer variables in (8) can be modeled
with auxiliary variables vin; = ZinZnm, and von, =
ZonZnm, ¥(n, m), where the auxiliary variables belong to set:

Vz{'ul:vlnm € {0,1}, va:vonm € {0,1},nEN, mEM
| Vinm S Tin; Vinm S Znm; Vinm 2 T1in + an._l;

V2nm S T2n; V2nm S Znm; V2nm Z Ton + Znm — 1}

Using a reformulation similar to [11], we define the new
problem:

Py w;n;lelv J(r,z,y,v)
y,r=0
s.t. (1) —=(7),(10) — (13),
Z k= Snm(Vinm, Vanm), VR EN, me M
PEEPnm

where J(-) is the objective of P, and we have set
Snm (VinmsV2nm) = ZnmSn (T1n,T2n ). It is important to stress
that problems P and P, are equivalent, meaning that when the
optimal solution for P, constitutes also an optimal solution
for our initial problem P. To see this, it suffices to observe
that due to the constraint set ) the newly introduced variables
are tightly coupled with the original variables.’

B. Applying Benders’ Decomposition

We use the Benders’ method [12] which decomposes Ps to
a Master sub-problem Py, that optimizes the binary variables
for fixed routing; and to a Slave program P,g that optimizes
routing for fixed split and assignment decisions:

Pas :min J(r, 2,9, )
st (7),(10) — (13),
Z Fﬁm = Snm(fl_)lnmarl_bnm),vn € N,m e M.

PLEPnm
Following the standard practice in Benders decomposition, we
use the dual of the Slave problem:

Posp : max h(m, &,§,2,8) st. H'w=<(, (16)

where 7 is the vector of dual variables and matrix H collects
the pertinent coefficients.

9This linearization comes at the cost of increasing the number of variables,
which is preferable in terms of computing cost.

Algorithm 1: Benders’ Decomposition Algorithm

Initialize: 7 = 0; ¢ = C\%) = ; UB©®) =
—LBO® >>1: ¢

-

repeat

2 Solve Py (Ch,CR) to get {07, 27, y", 27,07}

3 Set LB™ =

2onVa(@T, @3, 20) 422, Vin (Yl Yo 20) +07

4 Solve Pogp(x™,y™, 27, v7) to obtain w7
5 if UB™ < UB"™ ! then
6 UB™ =

Zn Vn(CC‘L (I)g) + Zm Vm (y{m,? ygmv z:;x) +
h(mwT, 2, y", 27, v7);

7 end

8 if h(w™, 27, y7,27,v7) < oo then

9 | cott =Chu{n™} % add extreme point;
10 else

1 | Citt =CLU{x™}. % add extreme ray;
12 end

13 T=7+L1L

1 until (UB™ — LB(™)/LB™ < ¢

15 Set optimal configuration, assignment, deployment:
xr* = $T§y* — yT,Z* = 27

16 Obtain optimal routing 7* from Pgp(x™,y", 27, v")

The Master problem P55, optimizes the discrete decisions
and a proxy continuous variable:

Poas : ezo,mgigev,y J(F,z,y,v)+0
st (1) —(7),
h(7r57w,y,z,v) <0, ¥rt eCo, (17)
h(ws, x,y,z,v) <0, Vot € Cp, (18)

where (17)-(18) are the optimality and feasibility cuts, respec-
tively, which gradually construct the entire constraint set of Ps.
The intuition behind this method is that the optimal solution
can be found before a full re-construction is built.

C. Iterative Solution Algorithm

The details are presented in Algorithm 1 which runs
until convergence. Firstly, it solves the Master problem
Pops to find the currently optimal integer decision variables
(x7,z7,v",y") and the value of the surrogate variable (67)
for the current iteration 7 (Step 2). These values are used to
set the lower bound LB(™) (Step 3). Then, we solve Pogp and
obtain 77 by using 7, 27, v",y"” (Step 4). Next, using the
Master problem, we can obtain a new upper bound (Step 5-7).
Regarding the cuts, we use the set Co to collect the optimality
cuts, and the set Cp to collect the feasibility cuts. Initially,
these sets are empty, Cg]) = CI@ = (. In each iteration T,
we inspect the value of the dual slave problem, and if it is
bounded, we add the respective solution vector, denoted 7,,,
to the set of optimality cuts C(OT ), as it gives us information
for where the optimal solution lies (Step 9); while if it is
unbounded, then we add the vector to the set of feasible cuts

C}T), as it gives us information for where feasible solutions



Performance Gains

Enables Layer 3 (RRC, PDCP) and Layer 2
(RLC, MAC) operations in the same server.
Enhancements to CoMP with RU frame
alignment and centralized HARQ.
Power-saving opportunities; Enhancements
to joint reception CoMP with uplink

PHY level combining

Split Point

S1  PDCP /RLC

S2 MAC/PHY

S3 PHY / RF

TABLE III: Performance Gains of Different Splits [9], [15].

lie (Step 11)). In every iteration, the new cuts generate new
constrains, and this shrinks the solution space. These steps are
repeated until the proportional difference between the upper
and lower bounds becomes smaller than the set threshold e
(Step 14). If we select ¢ = 0 we obtain the exact optimal
solution. This result is formally proved in the next theorem.

Theorem 2. Algorithm 1 converges within finite iterations to
the optimal solution of Ps.

Proof. We prove the result using Theorem 2.5 (Finite e-
convergence) of [45]. It suffices to verify that the properties
of our problem satisfy conditions C1-C3 which are outlined
in [46, Theorem 6.3.4]. We first define the set, O =

{7‘ = (Tﬁm 2 O)n,m,k | Z Z Tflm-[fj S Cijvv(ivj) € g}

neN pLEPn

where we simply used (7) to upper-bound the routing vari-
ables. Observe that this means our continuous variables are
contained in a non-empty convex set. Furthermore, fixing
the discrete variables (x, vy, 2z, v) the objective and constraint
functions become convex on r (namely, linear). Hence, P
meets condition C1l. Next, we can see directly that O is
bounded and closed, and for fixed discrete variables the
constraints (11)-(13) and (8) - (10) are linear on 7. Recall
that the remaining constraints do not include r. Therefore, P,
meets condition C2. Finally, for any feasible set (x,y, z,v),
P; admits a solution with bounded value. To see this, observe
that all parameters in our linear (in 7) functions and constraints
are bounded, and that O is bounded. I.e., P> and its dual have
bounded solution for any set of feasible discrete variables.
Since conditions C1-C3 are satisfied, Algorithm 1 converges
to the optimal solution of PP,. Clearly, this result presumes that
P has an optimal solution. O

VI. BALANCING COSTS AND CENTRALIZATION

In this section we extend the framework to include the cen-
tralization of functions, denoted R, together with the operating
costs. At a first glance, one would expect that these are two
perfectly aligned optimization criteria: minimizing the VRAN
cost ensures the maximum number of functions are placed at
CUs. After all, C-RAN has been envisioned as a solution for
lowering the costs of D-RAN. It turns out that in certain cases,
i.e., combination of network costs, capacities, and traffic loads,
these two metrics might be actually competing.

The centralization level is defined as the aggregate number
of functions fi, f2, and f3 that are deployed in CUs:

1
R(ya Z) = SiN Z Z (yln’m + Yonm + an) ) (19)
neN memM

which takes values in the interval [0, 1] with R(y, z) = 1 when
all functions are placed at CUs (C-RAN), and R(y,z) = 0
when we have a D-RAN. The first term in (19) counts how
many f; functions are deployed in any CU-m, m € M, the
second term counts the centrally deployed f» functions, and
the last term the centralized f3 functions. The performance
gains of centralization are summarized in Table III. For each
split, we have more benefits if more base stations adopt that
split (compared to D-RAN); and the benefits increase further,
for the same number of split BSs, if we select deeper splits.
Function R(y, z) captures qualitatively these aspects of the
VvRAN design problem.

In this framework, we aim to minimize the expenditure cost
and maximize simultaneously the network centralization. We
can express this combined criterion using scalarization:

Q: min UJ(ﬂf,ya zar) - (1 - U)R(ya z)

r,T,Y,z

st (1) — (13)

The tuning scalar parameter 7 € [0, 1] determines the relative
priority the operator wishes to place at each criterion. In-
creasing 7, will prioritize architectures that minimize operating
costs, and increasing (1 — 7)) shift focus on maximizing cen-
tralization. Clearly, different operators have different priorities
for their networks, and this can be reflected in the selection
of the weight parameter 7. Furthermore, problem Q can be
enriched with additional explicit constraints in order to achieve
certain cost-centralization values. For example, an operator
might enforce the cost not to be more than twice the minimum
J*, where the latter can be found by setting n=1.

It is not surprising, of course, that Q is computationally
harder than IP. This is formally stated in the following lemma.

Lemma 1. Problem Q is NP-hard and cannot be approxi-
mated within any constant factor.

Proof. 1t suffices to see that P <; Q. Indeed, if we could
obtain an oracle in polynomial time for solving @Q, then we
could call it by setting = 1 and obtain the respective optimal
solution for P; which, in turn, implies tractability of UHCFL
according to Theorem 1. O

Nevertheless, Algorithm 1 can be extended to solve this new
problem as well, only with minimal alterations. Indeed, we
can see that the Benders’ decomposition impacts only the
definition of the Master problem, which in the case of problem
Q will additionally include the discrete terms that count the
centralization objective. Hence, the steps of the algorithm will
not change, except the definition of Py .19 This also manifests
the power of the proposed framework.

19Dye to lack of space, we do not repeat the new version of the algorithm,
given that the changes are minimal.



(a) N1

(b) N2

Fig. 3: Radio Access Networks. Real network topologies from
operational networks in different countries [7]. Black, blue, green, and
red-colored dots represent the core network, DUs, routers, and CU
potential locations, respectively. The RANs are visualized according
to their coordinate location (longitude and latitude).

Finally, it is worth emphasizing that we can consider differ-
ent formulations for function R(y, z). For instance, an opera-
tor that values more the performance gains of having splits S2
than split S1, can add larger weights in variables {y25m }n,m.-
Similarly, we can imagine cases where it matters if the func-
tions are centralized in few CUs'!; and such solutions can be
driven by adding the discounting term (—v ) .. Zpm) Which
will activate fewer CUs. Our model and solution algorithm
can directly accommodate these changes.

VII. RESULTS AND DISCUSSION

In this section we present numerical tests using both real
and synthetic datasets to increase the robustness of our find-
ings aiming to examine the: (i) optimal multi-CUs VRAN
configurations; (ii) benefits of deploying multiple CUs; (iii)
cost-effectiveness of optimizing the CU locations and DU-CU
assignments, compared to non-optimized decisions; and (iv)
the effect of routing cost and DU traffic. Moreover, (v) we
study the interaction of cost and centralization, where we find
that a small cost increase can boost centralization, and explore
the effect of routing cost and traffic on this trade-off.

A. Network Topology and Evaluation Setup

We use two real and two synthetic RANs, Fig. 3. RAN N1
consists of a core node, 198 DUs and 15 CU locations; RAN
N2 has a core node, 197 DUs and 15 CU locations. Network
parameters such as delay, location, distance, and link capacities
are derived from the actual data or using other measurement
studies. We calculate the DU-CU paths by applying the k-
th shortest path algorithm [47]. The distance of DUs to CUs
and the core network ranges from 0.lkm to 25km and the
path delays reach 257.61us (N1) and 1152.69 us (N2). As
candidate CU locations, we select the nodes with the highest
network degree'”>. We also use random networks generated
using the Waxman algorithm [48] in order to test our findings
in different than the real networks N1 and N2. These random
networks comprise 272 nodes and have been generated using
the parameters o = 0.2 which indicate the link probability,
and 8 = 0.05 that controls the edge lengths.

'Naturally, having all functionalities of base stations in the same CU gives
better control for some operations, while dispersing the BS functions in many
CUs might induces again coordination issues.

2The RANs do not have CUs, and we followed this intuitive approach to
select locations that we then feed to our framework.

We set the system parameters according to actual testbed
measurements and previous works [7], [16], [42]. The default
DU load is \,, = 150 Mbps for each DU'3. For CPU capacity,
we use a reference core (RC), Intel 17-4770 3.4GHz, and set
the maximum computing capacity to 75 RCs for each CU, and
2 RCs for each DU. We assume that the default cost of CU-m
VM instantiation is a half'* of DU-n (a,, = a,,/2) [7], [16],
[42] but we also explore the impact of different ratios. The cost
of deploying of the CUs and its routing CU-EPC takes values
in the interval w,, € [15,22], where w;,, < w41 [16]. The
CU processing cost is set to b,, =0.0173,, according to our
measurements in [42]. The CU deployment cost is assumed at
least 30 times higher than the CU processing cost. This value is
calculated based on the comparison server setup price ($20K)
and data processing cost ($653.54) [16]. Finally, the routing
cost per path grows linearly with distance, ( = ¢4 Xdj,, where
cq 1s the cost per Km per Mbps and captures how expensive
is each link (can be different for each network).

B. Increasing the CU candidate locations

Our first experiment increases the number of available CU
locations and studies how this impacts the total cost (in mon-
etary units) and centralization. The deployment cost per CU
is assumed to be higher as we add more locations, i.e., wy, <
wm+1, since, naturally, the cheapest locations are selected
first. Fig. 4a shows that there are 6.65%, 8.79%, 13.10%, and
16.36% average cost savings when we increase the number
of CU candidate locations from one to M = 13, for various
routing costs and CU/DU computing efficiency gains. Similar
findings hold for N2, Fig. 4b. The trend of cost reduction
continues as the number of CU locations increases, albeit the
additional gains are fast decreasing and we reach a state (after
M =13 in this network) where adding more CU locations
does not bring further cost savings.

Figures 4c-4d show the distribution of deployed and non-
deployed CUss, i.e., not used locations. In N1, the deployment
is 100% when the candidate locations are up to M =4. Beyond
that, this percentage decreases, with a constant number of
11 deployed CUs when M = 13. However, in N2, we use
all locations until M = 14, showing that the deployment
is affected by the specific candidate locations and network
topology. That is, these results are qualitatively persistent but
the actual gains depend on the network and CU locations.

Findings: 1) As the CU locations increase, our framework
saves significant costs (16.36% in N1 and 28.79% in N2),
before the gains diminish. 2) Higher routing costs and lower
compute costs of CUs lead to substantial gains. 3) Network
characteristics affect the deployment of CUs.

C. Impact of Routing Cost and Traffic

We study the effect of routing cost on the total VRAN
cost and the centralization that our solution achieves i.e.,
the number of functions deployed at the CUs. Aside from

13This value corresponds to 2x2 MIMO, 1 user/TTI, 20 Mhz, 2 TBs of
75376 bits/subframe and IP MTU 1500B.

14D_RAN BSs cost twice as much as the C-RAN BSs, both for macro
($50K vs $25K) and micro BSs ($20K vs $10K) [16].
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comparing single and multiple CU candidate locations, we
also benchmark against C-RAN and D-RAN solutions (two
extreme cases). For this experiment, we have used the network
NI. In fully C-RAN, all functions except f; are placed at the
CU, while in D-RAN they are all deployed at the DU. In this
case, the deployment cost of CU is set to zero (w,, = 0)
for D-RAN (we do not need to deploy any CU), and the
traffic load of each DU is directly routed to the core network.
In this experiment, the routing cost (per Km and per Gbps)
increases from cg = 0.01 (very low) to ¢4 = 10 (very high).
Please note that networks N1 and N2 cannot support fully C-
RAN solutions and hence the results for this configuration are
hypothetical and presented for reference.

Fig. 5a compares our system cost to C-RAN and D-RAN
for different routing cost values c¢4. The C-RAN cost increases
significantly with ¢4, and eventually exceeds the D-RAN cost
(for cq =~ 0.01 per Gbps). For a single CU location and the
specific network parameters'®, the optimized configuration is
slightly better than D-RAN (0—1%) because the CU is near to
the core and far from the DUs, thus most functions cannot be
deployed at the CU, Fig. 5b. By considering higher number
of candidate locations we can obtain approximately 13.10%
(M = 3) and 23.15% (M = 5) cost savings at c;=10. Fig. 5b
shows the impact of the routing cost on centralization ratio. For
M =5 the centralization is higher (up to 77%) than the ratio
for smaller M values, but we also observe that, for fixed M,
the centralization, unlike the cost, is not affected significantly
by the routing cost. Clearly, this result is conditioned on the
relative values of the routing and computing costs.

5This result is affected by, e.g., the cost of deploying a CU, the distance of
this location compared to the core, etc. In general, even a single CU location
can significantly reduce costs, see [7] for examples.
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Next, we evaluate the impact of DU-n traffic on the cost.
We consider two scenarios. Firstly, the computational capacity
of each CU is 75 RCs. Secondly, the aggregate CU capacity is
P+ =75 RCs. Consequently, every CU has different capacity,
i.e., P, = Pyot/M, in each scenario as M changes. Our goal
here is to evaluate two design options: to have a single CU
with high computational capacity, or multiple CUs with lower
capacity. We use the same deployment and VM computational
cost for both scenarios. Fig. Sc shows that increasing the values
of M implies a reduction in the total cost. This saving gap
increases with higher values of \,, achieving for A\, = 500
Mbps a gain of 15.79% and 27.46% for M = 3 and M =
5, respectively, compared to M = 1 configuration. Similar
results are obtained in Fig. 5d, in which the computational
capacity of each CU decreases as M increases. In that case,
we observe savings of 15.79% and 26.9% for M = 3 and
M = b, respectively, compared to M = 1 configuration.

Findings: 1) The cost savings of having multiple CUs
increase with the routing cost and traffic load. 2) Higher
values of M imply higher centralization ratio, up to 77% gain.
3) Multiple CUs in different locations can achieve up to 26.9%
more cost savings compared to one CU with the same capacity.

D. Random vs Optimized Deployment of CUs

Next, we evaluate the gains of optimized as opposed to
random CU deployments. Fig. 6 shows the total cost as a
function of routing cost. For this evaluation the problem has
been slightly modified since we consider M = 15 and we
force our framework to optimize the location of only 3 CUs
(blue curve). For the random deployment (green curve), we
select 3 random locations from the M available locations and
we then optimize the function placement and routing. We
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average over 10 iterations get the average total cost. Fig. 6
shows that it is crucial not only to use multiple CUs but
to carefully optimize their placement. The cost-saving gap
increases with the routing cost up to 18.87% for this setting.

Finding: The location of the CUs in a multi-CUs vVRAN
is a crucial aspect to reduce the total cost. The evaluations
show that when the CUs locations are optimized a 18.87%
cost reduction can be achieved with respect to a random CU
deployment for a specific setting.

E. Pareto Analysis of the Multi-objective Problem

We study the problem Q of Sec. VI that includes both the
cost and centralization, which are scalarized through parameter
1. As we change 7, the priority of these objectives changes
and we obtain a new optimal solution. We have observed that
there is a trade-off between the criteria; that is, minimizing
the total cost does not necessarily imply the maximization of
centralization and vice versa. Fig. 7-10 show this trade-off
as a Pareto front, for different values of routing cost (cg),
DU demand (\,) and for various networks. In addition to
the real RANs (N1 and N2), we consider here two random
networks aiming at assessing the generality of our solution.
Although the Pareto front values change in different scenarios,
we always observe the same trade-off in all of them. In any
case, our framework achieves all possible optimal network
configurations that fall along the Pareto front, which is defined
by the total cost and centralization ratio.

Fig. 7-8 evaluate the routing cost impact (cg) on the total
cost vs. centralization trade-off, for different M. As expected,
when the routing cost increases (Fig. 8), the trade-off between
centralization and operating cost is sharper, in other words,
the cost of increasing the centralization ratio (by reducing 7))
becomes higher. For example, for the network topology N1,
we can achieve R = 1 for M = 5 with an increment of
285% on the total cost (Fig. 7a), while with double routing
cost (Fig. 8a) an increment of 507% is needed. We can also
observe that, in Waxman topology 1, the configuration with
R = 0.85 requires incrementing 310% the minimum cost for
M =5 (7c), while with double routing cost (8c) an increment
of 498% in required. Note that the value of 1 can be adjusted
by the operator depending on the centralization requirements
of the network and its monetary budget.

Finding: The cost we need to pay for increasing central-
ization, increases with the routing cost (cq). For example, for
topology N1 and M = 5, the cost J should be increased by
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285% to attain R = 1, while if we double the value of cy the
increase of J is 507%.

Fig. 9-10 evaluate the impact of the DU traffic (\,) on the
Pareto front. These figures show that, although the sharpness
of the Pareto front does not change, the curve is shifted in
the y axis to higher cost values. This implies that to configure
the same centralization ratio in the network the cost to pay
is higher as the DU traffic increases. Specifically, comparing
Fig. 9a-9d and Fig. 10a-10d we can observe that for the same
values of R, doubling the DU traffic implies multiplying the
cost by a factor between 2 and 3. Besides, we observe in
Fig. 9-10 that the value of M has a higher influence on
the Pareto front with higher DU traffics. The annotations in
Fig. 9b-9c and Fig. 10b-10c show that for the same value of
R the cost reduction associated with the increment of M is
higher when the DU traffic increases.

Findings: /) When the DU traffic (\,,) doubles, the Pareto
Sfront is multiplied by a factor in |2, 3], leading to higher costs.
2) The gap between the Pareto curves for different values of
M becomes more significant as the DU traffic increases.

Fig. 11 shows the impact of w,, on the Pareto front. We
evaluate our framework for w),, = C"-w,y,, where C' € [0.01, 10]
is a constant. As expected, higher values of w/, imply that
the centralization is more expensive. We also observe that the
network configuration at minimum cost (7 = 0) changes with
the value of C. This means that the operator can achieve higher
centralization at minimum cost as the deployment is cheaper.

Finally, Fig. 12 shows the average centralization ratio that
can be achieved for different values of M (x-axis) and its
associated increase of the total cost J (y-axis) compared to
the minimum achievable cost (i.e., when we set n = 1). The
results are averaged over multiple network instances. We find
that for M = 1 we obtain R = 0.48 on average with minimum
cost (y-axis value is J — J*/J* = 0). And by accepting a
cost increase of 41% we can achieve centralization R = 0.7.
Fig. 12 shows more examples associating the increment in
R and its respective increment on the cost, with respect to
the minimum attainable (for 7 = 1 in each case). The plots
average the results for all networks (two real; two synthetic)
presented above, and different values of routing cost and traffic
load. Hence, it offers general insight into how the increase of
network centralization affects the cost. We summarize the key
numerical findings in Table IV.

F. Evaluation of the computational time

We evaluate the execution time of Algorithm 1 in a range of
scenarios. We used a small laptop with an Intel(R) Core(TM)
i7-8750H CPU@2.20GHz, and 8 Gb of RAM memory. Al-
gorithm 1 has been implemented using IBM ILOG CPLEX
Optimization Studio 12.9.0.0 and its Python API [49]. We
have found that the only parameter having an impact on the
execution time is M. Higher values of M imply an increase
of the solution space and therefore affect the computational
time. However, Algorithm 1 is lightweight and converges fast
(despite the lack of theoretical guarantees) since it requires at
most 10 secs of computational time for M = 15, down to
2 secs for M = 5. Moreover, we do not find any significant
dependence on the value of the gap (¢), other than increasing
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Fig. 10: Pareto Analysis in High DU Traffic Scenario: Study of the cost J and centralization R in two real and two synthetic networks;
with routing cost cq=>5,Vp € P, and traffic load A\, = 500,Vn € N.

the number of outliers (executions with 3-4 times longer
convergence time).The reduced computational budget required

by our proposal makes it suitable for being executed at any
CU of the actual network.

VIII. CONCLUSION

There is a recent flurry of standardization and research activ-
ities to make VRAN the de facto solution for next generation
access networks. To this end, our work contributes towards
filling an important gap as it tackles the multi-cloud VRAN
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Experiment

Key Findings

Impact of adding CU locations (Fig. 4)

e The gains are significant (up to 29%), especially when routing is
expensive, and diminish gradually to zero.

Impact of routing cost and traffic (Fig. 5)

e Adding CUs can increase centralization up to 77% for high routing
costs; and for high traffic, it is preferable to disperse computing capacity
to multiple CUs.

Cost Minimiz.

Optimized versus random CU placement (Fig. 6)

e Optimizing the deployment saves significant costs, up to 19% when
routing is costly.

Relation of centralization and cost (Fig. 7-12)

e These two objectives can be aligned, independent (flat Pareto curve),
or conflicting (sharp Pareto curve), based on routing and CU costs, and
the traffic.

Effect of routing cost on trade-off (Fig. 7-8)

e The cost to pay for higher network centralization increases with the
routing cost.

Effect of traffic on the trade-off (Fig. 9-10)

o When traffic (A,,) doubles, the Pareto front is multiplied by a factor
in [2, 3], leading to higher costs. CUs become more important for cost
savings when Ay, is high.

Effect of CU deployment cost on trade-off (Fig. 11)

Cost - centraliz. Trade-off

e Higher CU deployment costs increase the cost of network central-
ization. Lower CU costs are associated with higher centralization at
minimum cost.

TABLE IV: Key Findings of the Numerical Evaluation.

design problem. Using a standards-compatible model we de-
velop a rigorous optimization approach that selects jointly
the number and location of CUs; assigns to them the DUs;
and finds the optimal split levels and routing paths for each
flow. Our framework can be tailored to other scenarios, e.g.,
when the operator needs to enforce a level of centralization
or when the cost functions are non-linear; can account for
energy-related or other costs and extended to include deci-
sions such as user association policies. These are interesting
directions for future work. The numerical evaluation showed
a higher number of CUs implies a cost saving up to 28% and
an improvement in the network centralization by 77%. The
deployment of multiple CUs implies a cost saving up to 26%
with respect to a single CU scenario with the same aggregated
computational capacity. We also observed a trade-off between
the minimization of the total cost and the maximization of
the centralization in the network. Our framework is able to
find all the optimal solutions in the Pareto front subject to any
centralization or cost constraint.
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