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Abstract—Virtualized Radio Access Network (vRAN) archi-
tectures and Multiple-access Edge Computing (MEC) systems
constitute two key solutions for the emerging Tactile Internet
applications and the increasing mobile data traffic. Their ef-
ficient deployment however requires a careful design tailored
to the available network resources and user demand. In this
paper, we propose a novel modeling approach and a rigorous
analytical framework, MvRAN, that minimizes vRAN costs and
maximizes MEC performance. Our framework selects jointly
the base station function splits, the fronthaul routing paths,
and the placement of MEC functions. We follow a data-driven
evaluation method, using topologies of 3 operational networks
and experiments with a typical face-recognition MEC service.
Our results reveal that MvRAN achieves significant cost savings
(up to 2.5 times) compared to non-optimized C-RAN or D-RAN
systems, and that MEC pushes the vRAN functions to RUs and
hence can increase substantially the network cost.

Index Terms—5G, Tactile Internet, Edge Computing, Cloud
RAN, Next Generation Fronthaul, Backhaul, Crosshaul

I. INTRODUCTION

The fast increasing mobile data traffic on the one hand,
and the stringent requirements of emerging services on the
other, have spurred numerous efforts for the redesign of Radio
Access Networks (RAN) in 5G. To this end, the deployment
of virtualized RAN architectures (vRAN) and Multiple-access
Edge Computing (MEC) platforms promise to add the much-
needed flexibility and intelligence at the network edge. How-
ever, the successful adoption of these solutions is an intricate
problem that raises novel theoretical and practical issues.

A. Background and Motivation
There has been remarkable progress in the design of

RAN architectures in the last few years. The concept of
centralized RAN (C-RAN) suggests the relocation of Base
Station (BS) functions from low-cost Radio Units (RUs) to
a central unit (CU) [1]. In C-RAN, the RUs perform only
basic RF processing (up/down conversion, amplification, etc.)
and exchange digitized (I/Q) radio samples with the CU via
the fronthaul network. This architecture promises to reduce
costs [2]–[4], and improve spectrum efficiency through the
centralized control of tasks such as interference management
[5]. Unfortunately, the latency and bandwidth requirements
that C-RAN imposes onto the fronthaul network are hard to
satisfy, and often require huge investments [3], [6].

More recently, a flexible design approach has been sug-
gested, where a (sub)set of the BS functions are centralized
based on the available network resources [3], [7]–[9]. This
architecture can relax the requirements of C-RAN when
needed, and several industry groups are currently working
for its standardization [10], [11]. This idea builds upon the
softwarization of RAN, which enables the flexible selection
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of the centralization degree (function split) of each BS, and
the term virtual RAN (vRAN) has been coined to describe it.
This fine-grained network design approach is considered very
promising for 5G systems [10]–[12].

However, designing vRANs is a challenging problem and
we currently lack a systematic methodology to solve it. At
the core of this problem lie the decisions for selecting the
function splits and the CUs-RUs routing paths which, clearly,
should be jointly devised. On the one hand, the optimal
function split decision for each BS depends on the capacity and
latency of the route that connects RUs with the CU. On the
other hand, selecting the optimal route requires information
about the volume and latency needs of the RU-CU data
flow, which both depend on the selected function split. Due
to the multiple vRAN split choices, this coupling makes a
traditionally challenging routing problem even harder.

The vRAN design problem is further compounded when the
RAN needs to accommodate Multi-access Edge Computing
(MEC) services. MEC is among the key enablers of 5G [13],
and is considered instrumental for the successful support of
emerging Tactile Internet applications [14]. For example, a
MEC platform deployed at the RUs can effectively enable
the real-time control of vehicles, a service that requires ultra-
low latency communications; or, it can support a mobile
face-recognition application by filtering its voluminous video
streams at the edge, hence reducing network congestion.

Clearly, there is an intricate coupling between the design
of vRAN and deployment of MEC services. Namely, in order
to host a MEC service an RU has to implement a full-stack
BS1 (host all BS functions) [15]; and this constraints its
eligible function splits. Conversely, placing all radio functions
at the CU (C-RAN) provides cost gains (resource pooling) but
consumes high fronthaul bandwidth. Therefore, it constraints
the deployment of throughput-hungry MEC services (such as
video analytics) which, for such C-RAN configurations, can
only be deployed at the CU (or further in the network core).
These decisions for the different BSs are intertwined as they
share the same network links and compute nodes.

Besides, MEC applications can be very diverse; some create
very large data flows (e.g., video streaming for surveillance),
while others have ultra-low latency needs, and others have
small flows but high computing load. Therefore, the problem
of deciding (i) where to place the various MEC applications,
(ii) how to select the function split for each BS, (iii) and how
to route the legacy and MEC traffic between RUs and CUs, is
as important as challenging to solve.

B. Methodology and Contributions
We introduce a rigorous analytical framework for the de-

ployment of MEC services and the design of vRAN. We treat
this as a unified problem and propose a joint optimization

1We focus on the challenging scenario where MEC applications interact
with users’ data plane, e.g., compute-intensive offloading or video caching.
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approach that determines the function splits, the MEC place-
ment, and the routing of (both legacy and MEC) data among
the RUs and CUs. We model the BS operation as a chain
of functions that successively process the user traffic, and the
MEC service as an additional function running on top of them.
The function implementation has certain memory requirements
and induces a computing cost that may vary across RUs and
CUs; and similarly the selected routing path affects the data
transfer costs. Our framework optimizes a weighted objective
of network expenditures and MEC delay, and allows different
operators to prioritize differently these criteria. We solve the
formulated problems using Benders decomposition algorithm,
which progresses in iterations and reaches eventually the exact
solution. We also find that, for the problems at hand, the
algorithm converges in satisfactory time.

In order to obtain practical insights we study an important
MEC face recognition service, using the open-source software
OpenFace [16]. We measure its compute and memory require-
ments and how the request rate (or, load) affects the service
delay. Furthermore, we analyze the properties (structure, link
capacities, etc.) of three real RANs in different countries.
We then employ our optimization framework to design the
vRAN architecture for these networks, assuming they need
to support the computing-hungry OpenFace application. We
use measurement-based values for the system parameters, and
conduct a thorough sensitivity analysis to asses their impact
on the network costs and the MEC delay.

Our contributions can be thus summarized as follows:

• Joint vRAN and MEC Design. To the best of our knowl-
edge, this is the first work introducing an analytical frame-
work for the joint design of vRAN and MEC architectures.
We propose a detailed model that accounts for the chaining
of functions, the coupling among MEC and vRAN, and the
network capacity constraints. Our framework is generic,
and we explain how it can be used for different types of
MEC services, including Tactile Internet applications with
ultra-low delay needs.

• Exact Optimization Framework. We characterize the com-
plexity of the arising optimization problem (NP-hard) and
design an intuitive algorithm that provably yields its exact
solution. We use Benders’ decomposition which separates
the problem into the routing and network configuration
sub-problems. Our method is practical as it facilitates the
solution of large problem instances, without compromises
in optimality.

• Evaluation Using Real Networks and OpenFace. We apply
our framework to actual RAN topologies, using a popular
MEC service that we have profiled and 3GPP specs. We
show that each network requires a different vRAN and
MEC configuration, and study how this is affected by key
system parameters. Our analysis reveals that, in these real-
istic conditions, the joint and flexible MEC-vRAN design
provides significant benefits compared to fully centralized
(C-RAN) and fully decentralized (D-RAN) architectures.

Paper organization. §II introduces the model and the
problem. §III provides the problem formulation and §IV the
solution algorithm. §V presents the experimental profiling of
OpenFace, and analyzes the RAN data. §VI presents a thor-
ough data-driven evaluation of our optimization framework.
We review the literature in §VII and conclude in §VIII.

II. SYSTEM MODEL AND PROBLEM DEFINITION

We define here the model for the network, demand, and the
system functions, and introduce formally our problem.
A. Model and Preliminaries

For the scope of vRAN-MEC design the key splits are those
in Fig. 1 [10]. Split 1 is the full-stack BS implementation at
RUs (D-RAN). Split 2 enables the centralization of L3 and L2
operations and enhances mobility management. Split 3 enables
higher resource pooling and multi-cell coordination but has
tight delay bounds (for data transfers among the function
locations) and introduces data overhead. Finally, split 4 (C-
RAN) consumes very high bandwidth (load-independent), has
very low delay bounds, but maximizes spectrum efficiency and
hardware utilization [8]. Based on the latest proposals [8], [10],
[11] we consider packet-based shared links in the fronthaul.

Demand. We focus on the uplink, but our study can easily
be extended for downlink. We model the demand from users
associated to BS n as follows: there are inelastic MEC services
(henceforth, type a) with hard delay requirements such as those
arising in Tactile Internet [14] (1ms); and throughput-hungry
delay-elastic MEC services (henceforth, type b) for which we
minimize the delay.2 Type a requests of the users attached
to BS n are created by a process3 {Ma

n(t)}1t=1 with values
upper bounded by µ

a
n (requests/s), creating a maximum (peak)

data flow �

a
n = �aµ

a
n (Mb/s) that must be routed from RU

n towards the MEC service location. Similarly, for type b

requests from users of BS n it is {M b
n(t)}1t=1, with maximum

value of µb
n, and peak load �bn = �bµ

b
n. The network supports

also legacy user traffic (e.g., mobile broadband) that must be
routed from each RU n to the CU (and then to the mobile
core/Internet; out of our scope). The total traffic created by
the users that are associated with BS n is denoted �n (Mb/s).

MEC and Radio Functions. The BS operation is a chain
of functions [10]: f0 corresponds to basic radio tasks (analog
processing, etc.) and is placed at RUs. Assuming LTE, f3

corresponds to PDCP, f2 to (RLC and MAC) and f1 models all
PHY functions not in f0. The deployment of these functions
sets the delay-bandwidth requirements between the CU and
RUs, as explained in Fig. 1. Similarly, functions f

a
4 and f

b
4

correspond to MEC services of type a and b, respectively;
and can be deployed at CUs or the RUs with full-stack
implementation, i.e., hosting functions f0 up to f3.

The execution of each function requires a certain number
of processing cycles per unit of traffic; and hence each split
induces a different processing load to the RUs and CU. Let
us denote this load (cycles per Mb/s) with ⇢i,r and ⇢i,c, for
the RU and CU respectively, when split i 2 {1, 2, 3, 4} is
selected. We also denote with ⇢a and ⇢b the processing load
for MEC services of type a and b, respectively. The execution
of functions requires also memory, and we denote with ⌧i,r

and ⌧i,c the total memory needs (MB per request/s) for each
split i (for the RU and CU, respectively); and with ⌧a and
⌧b the memory needs of MEC functions. Sec. V presents the
measurements and data used for quantifying these parameters.

Network and Servers. We consider a RAN with a set N
of N RUs (or, BSs) and 1 CU.4 These are connected with

2We focus on delay-sensitive services here, but our approach can be applied
to different KPIs, using any mix of delay, throughput, and other criteria.

3Since this is a network design problem one can use the peak loads, as we
do, or any expression of their mean values (see [2]. This depends on how
(in)elastic the service is, and whether admission control is employed.

4Single-CU systems are the most common in practice [17] and besides the
RU/CU assignment is decided a priori. Hence our framework can be directly
extended to multiple CUs.
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1.02.λ +1.5

Uplink Traffic

1.λ

Performance Req. 
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Fig. 1: Bandwidth and latency requirements of key splits [10];
functions are chained; � is the total traffic from the users of this BS.
The case of no split is also shown (referred to as split 1 to facilitate
discussion), and corresponds to the Decentralized RAN (D-RAN).
The MEC services are placed at the CU, or RU if D-RAN is selected.

a packet-based fronthaul network5
G = (I, E), where I is

the superset of routers, CU (node 0) and RUs; and E the set
of links connecting these elements. Each link (i, j) 2 E has
average capacity cij (Mb/s), and delay dij (secs). Let

p := {(n, i1), (i1, i2), . . . , (ik, 0) : (i, j) 2 E} ,
denote a path from RU n to CU; Pn is the set of all paths
from RU n to the CU, and we define P = [N

n=1Pn. Each
p 2 P is described by the total delay dp of its links. RU n

has processing capacity Pn (cycles/s) and memory Tn (MB);
and the respective quantities for the CU are P0 and T0. The
requirements of functions deployed at each location should not
exceed these processing and memory capacities.

Costs. There is an average data transfer cost due to leasing
costs, equipment utilization, etc. in the network. We denote
�p the cost for path p (per Mb/s) and define the routing cost
vector � = (�1, �2, . . . , �|P|). In vRAN f2 and f1 can be
implemented in virtual machines (VMs). The cost for initiating
and using a VM depends on the hardware. CUs are in central
facilities and use high-end servers; hence this cost will be
lower compared to RUs [2]. We denote with ↵n (monetary
units) the average cost for instantiating a VM in RU n (due
to cooling, leasing fees, etc.), with �n the average cost for
serving each request (monetary units per cycle); and define the
respective parameters ↵0, �0 for CU [18]. The computing cost
vectors are ↵ = (↵0,↵1, . . . ,↵N ) and � = (�0,�1, . . . ,�N ).

B. Trade Offs and Problem Definition
The objective of the operator is to select the vRAN-MEC

configuration that maximizes the MEC performance while
minimizing the network costs. We consider here the delay
as the key performance criterion since it affects the majority
of MEC services; but additional factors might be relevant in
other scenarios. The cost comprises computing and routing
expenses [2], [4] and since this is a network design problem
we consider their maximum values (see [2]). Clearly there
is an inherent tension between the function centralization the
network would prefer (CUs are more cost-efficient), and the
MEC performance which is typically maximized when the
requests are satisfied at the edge. The exact relationship of
these two objectives depends on the network architecture and
the available link, compute and memory resources.

Nevertheless, while the coupling between MEC and vRAN
designs has been recently discussed, e.g., see [19], [20], the

5Since we consider diverse scenarios including fronthaul flows (in C-RAN
split), backhaul flows (D-RAN) and hybrid flows (a.k.a. midhaul, crosshaul,
xhaul), we will use either of these terms for the RU-CU traffic. Similarly, we
use the terms fronthaul, backhaul or RAN for the RU-CU network.

consideration of performance and cost criteria raises several
hitherto unexplored trade-offs. On the one hand, placing
the radio functions (f0 � f3) at RUs reduces the fronthaul
network load and hence the routing costs. On the other hand,
aggregating the vRAN functions at the CU reduces computing
costs and offers centralized control that can improve the
network’s performance, e.g., through sophisticated interference
management. However, some splits have very tight delay
constraints and create high fronthaul traffic, and the CU might
not have enough computation power to support all BSs.

Furthermore, the execution of MEC services at RUs can be
beneficial because: (i) the requests are satisfied in proximity
with users and hence possibly with low delay, and (ii) the
RUs filter the MEC traffic and hence reduce the fronthaul
network congestion. On the other hand, MEC execution at
CU might in practice ensure faster execution if the fronthaul
network is well-provisioned and the CU has much larger
processing capacity than the RUs. Besides, execution at the
CU can improve, in some cases, the MEC performance due to
centralization. Consider for example, an Artificial Intelligence
application that achieves higher precision when information
from multiple BSs is jointly processed.

To account for all the above aspects, we introduce a generic
optimization framework for the joint vRAN-MEC design:

MEC-vRAN Design Problem (MvRAN): Given the antici-
pated legacy and MEC demand �; a network G = (I, E) with
link capacities and delays; computing and routing costs, ↵, �
and �, decide (i) where to deploy the radio functions f0, f1,
f2, f3; and the MEC services fa

4 and f

b
4 ; and (ii) how to route

the traffic among the CUs and the RUs, in order to maximize
the MEC performance and minimize the network costs.

III. MEC AND VRAN DESIGN

Network Configuration. We introduce the binary configu-
ration variables x1n, x2n, x3n, x4n, which determine whether
functions f1, f2, f3 will be deployed at RU n (x1n = 1); or
function f3 will be moved to CU (x2n = 1); or both f2 and
f3 will be moved to CU (x3n = 1); or, we will place all BS
functions at the CU (x4n = 1). We also define the matrix:

x =

�
xn = (x1n, x2n, x3n, x4n) : n 2 N

�
.

The configuration decisions account for the function chaining
constraints which dictate that f1 (f2) cannot be deployed at
the CU unless f3 and f2 (f3) are also placed there. Clearly, it
is necessary to select exactly one configuration, hence:

x1n + x2n + x3n + x4n = 1, 8n 2 N . (1)

MEC placement. The placement of MEC type a and type
b services is determined by the variables y

a
n and y

b
n for RU

n, respectively; which are equal to one if the services are
deployed at RU, and zero if placed at the CU. We define:

ya = (y

a
n 2 {0, 1} : n 2 N ), yb = (y

b
n 2 {0, 1} : n 2 N ) .

These decisions are constrained by the vRAN setting, as a
MEC service can be placed only after PDCP location. Hence,

y

a
n  x1n, y

b
n  x1n, 8n 2 N . (2)

Routing decisions. We let z

(n)
p denote the traffic (Mb/s)

routed over path p 2 Pn (from RU n), and define the routing
matrix z=(z

(n)
p , p2P, n2N ). Routing choices must satisfy:
X

n2N

X

p2Pn

z

(n)
p I

ij
p  cij , 8 (i, j) 2 E ,
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with I

ij
p 2{0, 1} indicating if link (i, j) belongs to path p. We

consider a packet-based network [8], [10] and hence multiple
paths can be selected for every RU, as long as it holds:

X

p2Pn

z

(n)
p = Sn, 8n 2 N ,

where Sn (Mb/s) is the flow that RU n sends to CU and
depends on demand and the network configuration:

Sn(xn, y
a
n, y

b
n) =� y

a
n�

a
n � y

b
n�

b
n + �nx1n + �nx2n

+ (1.02�n + 1.5)x3n + 2500x4n,

and we refer the reader to Fig. 1 and (1)-(2) for the derivation
of this expression. Note that when all BS functions are
deployed at CU (x4n=1) the flow is independent of �n.

Delay constraints. The flow z

(n)
p cannot be non-zero if the

delay dp of path p exceeds the threshold required by the split
that has been selected for RU n [10]. Hence, the configuration
decisions x determine which paths are eligible for each RU.
To capture this dependency, we partition the set of paths as
follows: set P(2)

n ✓ Pn of paths with delay larger than 30msec;
set P(3)

n ✓ Pn of paths with delay larger than 2msec; and
set P(4)

n ✓ Pn of paths with delay larger than 0.25msec.
Obviously, it holds P(2)

n ✓ P(3)
n ✓ P(4)

n . Then, for split 2
(x2n = 1) all flows in P(2)

n should be set to zero, for split
3 (x3n = 1) set to zero all flows in P(3)

n , and for split 4
(x4n = 1) those in paths of P(4)

n . Also it is P(1)
n = P(2)

n .
Objective. The goal of the network operator is to minimize

its costs and the delay the MEC services experience. To
achieve this, we use a standard scalarization approach that
ensures that we will obtain a Pareto optimal solution.

In detail, for routing costs we consider a linear function:

Up(z
(n)
p ) = �p

X

n2N
z

(n)
p , p 2 P . (3)

The computing costs depend on the vRAN configuration and
the placement of the MEC functions. In particular we define
the aggregate computing cost function for each RU n:

Vn(xn, y
a
n, y

b
n) =y

b
n(⇢b�

b
n�n + ↵n) + y

a
n(⇢a�

a
n�n + ↵n)

+ ↵n +

4X

i=1

xin⇢i,r�n�n . (4)

The cost incurred by the CU for the needs of each BS n is:

V0n(xn, y
a
n, y

b
n) =

4X

i=1

xin(⇢i,c�n�0 + ↵0) (5)

+ (1� y

a
n)(⇢a�

a
n�0 + ↵0) + (1� y

b
n)(⇢b�

b
n�0 + ↵0)

where the last terms indicate that when an RU does not
implement a function this load is shifted to CU. Therefore
the overall processing cost in the system is:

V (x,y) =

NX

n=1

Vn(xn, y
a
n, y

b
n) + V0n(xn, y

a
n, y

b
n), (6)

where y collects all the MEC placement decisions.
The delay that a MEC request experiences depends on

the maximum routing delay dpn of the paths in Pn, and
the processing delay. The latter is constant for low demand,
but can increase with the load for services with high CPU
load, as in the case of OpenFace (see Fig. 3). Based on our

experiments, Sec. V, we use the following model:

D

i
n(y

i
n) = (1� y

i
n)�

i
ndpn+ (7)

�1

✓
�

i
ny

i
n

✓
⇢

Pn

◆
+ �

i
n(1� y

i
n)

✓
⇢

P0

◆◆
+

�2

✓
�

i
ny

i
n

✓
⇢

Pn

◆
+ �

i
n(1� y

i
n)

✓
⇢

P0

◆◆2

where i = {a, b} (the two MEC types), and �1 and �2

are non-negative parameters that characterize the load-delay
relationship. To measure the latter, we have fit experiment
data, Sec. V. Note that for simpler MEC services where
the processing delay per request is constant, we could use
a simpler expression by setting �2=0. In any case, the delay
is linear with the placement decisions and grows with the
processing load, which is in line with classical queuing models
used to capture congestion-based delays in servers.

The delay cost of type-b MEC service can be defined as a
linear function of the actual delay for all users in all BSs:

D

b
(yb) = ✓ ·

NX

n=1

µ

b
nD

b
n(y

b
n),

where ✓ > 0 transforms delay in cost (monetary units). The
smaller the aggregate delay a MEC user experiences, the
higher the perceived performance is, and hence the smaller
the delay cost. Conversely, for type-a MEC applications we
need to guarantee for each request that Da

n  Dth, where Dth

can be as small as 1ms for Tactile Internet applications.
Putting the above together, we formulate the MEC-vRAN

joint design problem (MvRAN):

Problem 1 (MvRAN Design).

min

x,y,z
J(x,y, z) = V (x,y)+

X

p2P
Up(z

(n)
p )+D

b
(yb) (8)

s.t. x1n + x2n + x3n + x4n = 1, 8n 2 N (9)
y

a
n  x1n, y

b
n  x1n, 8n 2 N (10)

4X

i=1

xin⇢i,r�n + y

a
n⇢a�

a
n + y

b
n⇢b�

b
n  Pn, 8n 2 N (11)

NX

n=1

⇣ 4X

i=1

xin⇢i,c�n+(1�y

a
n)⇢a�

a
n+(1�y

b
n)⇢b�

b
n

⌘
P0 (12)

4X

i=1

xin⌧i,rµn + y

a
n⌧aµ

a
n + y

b
n⌧bµ

b
n  Tn, 8n 2 N (13)

NX

n=1

⇣ 4X

i=1

xin⌧i,cµn+(1�y

a
n)⌧aµ

a
n+(1�y

b
n)⌧bµ

b
n

⌘
T0 (14)

D

a
n(y

a
n)  Dth, 8n 2 N (15)

x1n, x2n, x3n, x4n, y
a
n, y

b
n 2 {0, 1}, 8n 2 N (16)

X

p2Pn

z

(n)
p = Sn(xn, y

a
n, y

b
n), 8n 2 N (17)

X

p2P(i)
n

z

(n)
p  M(1� xin), 8n 2 N , i 2 {1, 2, 3, 4} (18)

X

n2N

X

p2Pn

z

(n)
p I

ij
p  cij , 8(i, j) 2 E (19)

z

(n)
p � 0, 8p 2 Pn, 8n2N (20)

where we used a Big-M formulation in (18), with M>>0, to
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deactivate the delay-ineligible paths for each configuration.

Theorem 1. MvRAN Problem is NP-hard to solve.

Proof. This result can be showed with a polynomial reduction
from the multi-dimensional multiple-choice Knapsack prob-
lem (MMKP ) [21]: there are n groups of items and m

resource types; each group i has li items; each item j of group
i has value vij and requires rijk units of type-k resource. The
goal is to select one item from each group so as to maximize
the value of items subject to the constraints for each resource.
Consider a restricted case of MvRAN where all paths are
eligible and there is no routing cost. Hence, for every con-
figuration we can trivially find a routing policy. This instance
can be directly mapped to MMKP : configuration options
are mapped to knapsack items (li = 4, 8i), where each group
is a BS, and processing and memory resource constraints to
knapsack constraints. Hence, if we could solve MvRAN in
polynomial time, we could also solve MMKP .

Next, we introduce a solution method for the MvRAN de-
sign problem that leverages a tailored decomposition method.

IV. DECOMPOSITION AND OPTIMIZATION ALGORITHM

The computational complexity of this problem increases
substantially for large scales. In order to expedite its solution,
we employ Benders’ decomposition method [22] that sepa-
rates a mixed integer problem into a slave subproblem (with
the continuous variables only) and a master problem (with
the discrete variables). Using this approach we decompose
MvRAN to the fronthaul routing optimization problem (slave)
and the vRAN-MEC configuration problem (master). Based
on Benders’ seminal Separation Theorem, the solution of
these two distinct problems, properly combined, will yield the
exact solution of the initial problem. The algorithm progresses
iteratively. In each round, it places the RAN and MEC func-
tions (assuming fixed routing decisions), and then optimizes
the routing decisions (for fixed function placement). In each
iteration we create additional cuts which confine the solution,
gradually leading it to the optimal point of the initial problem.

In detail, the slave routing problem is obtained if we fix the
binary configuration variables to ¯x, ¯y:

PS(¯x, ¯y) : min

z�0

X

p2P
�p

X

n2N
z

(n)
p (21)

s.t.
X

n2N

X

p2Pn

z

(n)
p I

ij
p  cij , 8 (i, j) 2 I (22)

X

p2Pn

z

(n)
p = Sn(x̄n, ȳ

a
n, ȳ

b
n), 8 n 2 N (23)

X

p2P(i)
n

z

(n)
p  M(1� x̄in), 8n 2 N , i 2 {1, 2, 3, 4} (24)

The dual of PS can be succinctly written as follows:

PSD(

¯x, ¯y) : max

⇡

g(

¯x, ¯y,⇡) s.t. HT⇡  �, (25)

where � is the routing cost vector, matrix H is defined by
the objective and constraints (22)-(23), ⇡ is the vector of the

|I|+ 5|N | dual variables, and the dual function is linear:

g(

¯x, ¯y,⇡) =�
X

(i,j)2I

cij⇡1ij +

X

n2N
Sn(x̄n, ȳn)⇡5n

�
4X

i=1

X

n2N
M(1� x̄in)⇡in .

The master function placement problem is:

PM (C1, C2) : min

x,y, V (x,y) +D

b
(yb) +  (26)

s.t. y

a
n  x1n , y

b
n  x1n, 8n 2 N (27)

x1n + x2n + x3n + x4n = 1, 8n 2 N (28)
4X

i=1

xin⇢ir�n + y

a
n⇢a�

a
n + y

b
n⇢b�

b
n  Pn, 8n 2 N (29)

NX

n=1

⇣ 4X

i=1

xin⇢ic�n+(1�y

a
n)⇢a�

a
n+(1�y

b
n)⇢b�

b
n

⌘
P0 (30)

4X

i=1

xin⌧irµn + y

a
n⌧aµ

a
n + y

b
n⌧bµ

b
n  Tn, 8n 2 N (31)

NX

n=1

⇣ 4X

i=1

xin⌧icµn+(1�y

a
n)⌧aµ

a
n+(1�y

b
n)⌧bµ

b
n

⌘
T0 (32)

D

a
n(y

a
n)  Dth, 8n 2 N (33)

g(x,y,⇡m
)   , 8⇡m 2 C1 (34)

g(x,y,⇡l
)  0, 8⇡l 2 C2 (35)

 � 0, x1n, x2n, x3n, x4n, y
a
n, y

b
n 2 {0, 1} (36)

Algorithm 1: MvRAN Decomposition Algorithm

1 Initialize: ✏, ⌧ = 1; C(0)
1 = C(0)

2 = ;; UB(0) = �LB(0)>>1
2 repeat
3 Solve problem PM (C(⌧)

1 , C(⌧)
2 ) to obtain x

(⌧),y(⌧), (⌧).
4 Set LB(⌧) = V0(x

(⌧),y(⌧)) +  (⌧) +
P

n Vn(x
(⌧),y(⌧)).

5 Solve problem PSD(x(⌧),y(⌧)) to obtain ⇡

(⌧).
6 If UB(⌧) < UB(⌧�1) then UB(⌧) =

V0(x
(⌧),y(⌧))+g(⇡(⌧),x(⌧),y(⌧))+

P
n Vn(x

(⌧),y(⌧)).
7 If g(⇡(⌧),x(⌧),y(⌧)) <1 then

⇡

m  extreme point
C(⌧+1)
1 = C(⌧)

1 [ {⇡m}.
8 If g(⇡⌧ ,x⌧ ,y⌧ )!1 then

⇡

l  extreme direction/ray
C(⌧+1)
2 = C(⌧)

2 [ {⇡l}.
9 ⌧ = ⌧ + 1.

until UB(⌧) � LB(⌧)  ✏;
10 Set the optimal configuration as x

⇤ = x

(⌧) and y

⇤ = y

(⌧).
11 Compute the optimal routing z

⇤ by solving PSD(x(⌧),y(⌧)).

Algorithm 1 summarizes the optimization steps. The sets C1
and C2 contain the parameters based on which we create the
cuts. In each iteration ⌧ , we first solve the master problem in
order to obtain the currently optimal configuration x(⌧)

,y(⌧),
and also the surrogate parameter  (⌧) (Step 3). These are
used to set the current lower bound LB

(⌧) (Step 4). Then, we
solve the dual slave problem PSD using the current variables
x(⌧)

,y(⌧) (Step 5). Next, we calculate the new upper bound,
using the value of the relaxed master problem (Step 6). After
each iteration we update the sets C1 and C2, by adding the
respective values ⇡ in C1 if the dual optimal value is bounded,
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or in C2 if the dual is unbounded; these will be used in solving
PM in the next iteration. These steps are repeated until the
upper and lower bounds coincide, and the solution precision
can be tuned by selecting ✏. Note that, if MvRAN is unfeasible,
then we will obtain an unbounded value for the slave problem
in the first iteration [22].

The master problem is computationally challenging but
its dimension has been substantially reduced (compared to
MvRAN problem) as we have replaced all the routing variables
with  . There are several methods to expedite its solution.
For example, during the first iterations we can remove the
integrality constraints (LP relaxation) for the configuration
variables (in the master problem), until the UB � LB gap
has been reduced enough. This will make PM solvable in
polynomial time. When the gap reaches a low value (i.e.,
|(UB � LB| ! 0), we can re-introduce these integrality
constraints so as to obtain a feasible solution. This method is
proved to preserve optimality, since no solutions are removed
by the cuts that are added during the first stage iterations [23].
The next theorem describes the Algorithm’s performance.

Theorem 2. Performance of Algorithm 1. It converges in a
finite number of iterations to the optimal solution of MvRAN.

Proof. The proof follows from the Partition Theorem in [22]
which we can directly apply here. Namely, using a more
abstract notation (for brevity) the problem’s solution can be
obtain by solving equivalently:

min

x,y, 
c

T
1 x+ c

T
2 y +  s.t. (x,y, ) 2 G , (37)

where G is the set of constraints for all variables, created by
the intersection of the constraints in X , Y and the convex hull
of the extreme halflines stemming from the dual slave problem
(which is a polyhedral cone C). The algorithm starts with the
minimal set of constraints G(0) (for C1 = C2 = ;) and at each
iteration ⌧ adds one extreme halfline of the cone C in G(⌧) by
modifying the sets C(⌧)

1 and C(⌧)
2 . Given that there are finite

such constraints , and since in each iteration we add a different
halfline, the algorithm terminates in a finite number of steps.
The convergence to the optimal solution is ensured by the fact
that, in the worst case, we will reconstruct the initial set G.

V. DATA ANALYSIS

In this section we experimentally study a face recognition
application (OpenFace [16]) that corresponds to a type b MEC
service in our system model. Our goal is to understand what
are its memory, CPU and bandwidth requirements. We also
present and analyze three real cellular RAN topologies from
different operators in 3 European cities. These will be used in
the sequel for evaluating our optimization framework.

A. Network Topologies
We studied the RANs from operators in Romania (denoted

R1), Switzerland (R2), and Italy (R3), with 198, 197 and 200
RUs, respectively; and we plot them in Fig. 2(a)-(c). First,
we note that the RANs are heterogeneous. R3 has mainly
fiber links, R2 wireless links and R1 has fiber, copper and
wireless links. The networks differ also in the number of paths
connecting the RUs with the CU. R1 has high path redundancy
(mean of 6.6 paths), while in R3 several RUs have only 1 path
(mean 1.6). This difference reveals the need for a tailored
vRAN design for each network. Second, we observe that the
RANs do not have a typical structure. Some RUs are located
up to 20Km far from the CU (in R3), while others are in

0.1Km distance. Hence, any non-optimized heuristic vRAN
configuration policy could be arbitrarily inefficient. Finally, the
RANs have links with diverse capacity (ranging from 2 Gb/s to
2000Gb/s) and diverse path delay (which we calculated with a
standard store-and-forward model.6) as shown in Fig. 2(d)-(e).
We note that delay is up to 40 times higher in some paths,
and that many RUs cannot support C-RAN (Split 4).

B. An Edge Computing Application: Face Recognition

We set up a scenario with a 16-core off-the-shelf server with
128 GB RAM running (virtualized) face recognition services,
a standard laptop running the clients (emulating users), and
a 1 Gb/s Ethernet network connecting users and services
(to ensure negligible delay). We use the open-source service
OpenFace and a web front-end for the client. In order to
emulate multiple clients we generate virtual video devices
using v4l2loopback kernel module, and feed the same
pre-recorded video to each virtual device in order to protect
repeatability. We employ two qualities in the video feed: “low
resolution” with H.264/AVC codec and 840⇥480 resolution
(usual specs from a laptop webcam); and a “high resolution”
video with the same codec and 1920⇥1080 resolution.

We deploy in our server a dockerized7 OpenFace service
for every client. Each (virtual) video device sends a video
frame to the service every T seconds. Upon reception, the
service analyzes the picture and processes a bounding box
(around the recognized face in the picture) and a label (tagging
the identified person), and then feeds this information to the
client. The client displays the bounding box and the label,
and initiates an object tracking procedure to let the box and
label follow the video stream smoothly. Each experiment lasts
100 secs and we assess both video qualities and various picture
transmission rates T , measuring the service delay for every
request and resource consumption every 2 secs.

To facilitate presentation, we focus on one client creating
flows with different loads—namely, we vary the frame rate:8

T = {0.128, 0.256, 0.512, 1.024, 2.048, 4.096},
and we also change the video quality in order to assess the
impact of the network load on the CPU consumption, memory
consumption and service request delay. Fig. 3 presents the
results, evincing a linearly increasing relationship between
CPU utilization with network load, and constant memory
utilization. In fact, the memory increases with the number of
clients (each one using a different docker container) but is
relatively constant with the client’s load. These measurements
validate our model in Problem 1 (eqs. (11)-(14)). In the last
plot of Fig. 3, we depict the mean delay for each video frame
request as a function of the CPU load, which suggests an
increasing relationship between the two (and, subsequently,
with network load) that we approximate with a quadratic fit
that motivate our delay model in eq. (7). The fitted parameters
of eq. (7) for the OpenFace application are �1 = 0.25 ms,
�2 = 0.25 ms and ⇢ = 0.1.

6We conservatively used 12000/cij , 4µs/Km (cable) or 3µs/Km (wireless),
and 5µsecs for transmission, propagation, and processing delay, respectively.

7A (Docker) container is a light virtualization technology that ensures
resource isolation features. Docker’s swarm clusters are particularly useful
in our case because a Docker’s cluster manager takes care of balancing the
clients’ data load across the different OpenFace servers.

8Since several video frames display the same faces, T can naturally be
lower than the actual video frame rate. Note than an object tracking procedure
in the client allows labels to move in real-time with the video playout.
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(a) Romanian topology (R1). (b) Swiss topology (R2). (c) Italian topology (R3).
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Fig. 2: (a)-(c): Three actual RANs in Europe: red dots indicate the RUs’ locations; black dots the routers/switches; and green dot the CU
location which has been placed at the EPC (most central position). (d)-(e) The eCDF of path capacity and delay in these topologies.
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Fig. 3: Relationship between CPU/memory consumption, network
load and delay performance. The load is increased by changing the
video quality and the frame rate T .

VI. PERFORMANCE EVALUATION

In the following, we evaluate MvRAN using the real RANs
(Fig. 2) and our OpenFace measurements. We are interested
to explore how the network load and system parameters affect
the number of vRAN and MEC functions that are placed at the
CU, i.e., their centralization degree, and the different system
costs. Occasionally, we compare our findings with the typical
D-RAN architecture (full-stack base station implementation
used in 3G/4G), and the C-RAN architecture (all functions at
CU). Finally, we focus here mainly in type b MEC services
as their elasticity renders the evaluation more intricate (type
a impose only hard constraints).

A. Evaluation Setup
The parameters we use are summarized in Table I. We

assume 1 user/TTI, 20MHz (100 PRBs), 2⇥2 MIMO, CFI=1,
2 TBs of 75376 bits/subframe, and IP MTU 1500B, for a
high-load scenario � = 150Mb/s for every RU. We consider
an Intel Haswell i7-4770 3.40GHz CPU core as the reference
core (RC) for the CPU capacity. From our measurements
and those in [24], we estimate that f3 yields 20% of the
total consumption of a software-based LTE BS, f2 for 15%,
and f1 65%. From [4], we calculate the computing needs
of a software-based LTE RU, and we set it to 750 µs of
the reference CPU for processing each 1-ms subframe [4],
which translates in 75% of 1 RC. Hence, we set ⇢i,r =

{0.05, 0.04, 0.00325, 0} and ⇢i,c = {0, 0.001, 0.00175, 0.05}
RCs per Mb/s for i = {1, 2, 3, 4}, respectively. Finally, unless
otherwise stated, we set P0=75 RCs and Pn=2 RCs, 8n 2 N

Param. Default value Description

�p 0 Gb/s�1 Cost⇤ per Gb/s across path p
↵n 1 Cost⇤ per vRAN function in RU n
↵0 0.5↵n Cost⇤ per vRAN function in CU
�n 1 RC�1 Cost⇤ per CPU usage in RU n
�0 0.017�n RC�1 Cost⇤ per CPU usage in CU
✓ 1 sec.�1 Cost⇤ per MEC type b delay

Dth 1 ms MEC type a delay tolerance
⇢i,r {50, 40, 3.25, 0} RCs/Gbps CPU req. in a RU for vRAN split i
⇢i,c {0, 1, 1.75, 50} RCs/Gbps CPU req. in a CU for vRAN split i
⇢a(b) 0.1 RCs/Mbps CPU req. of MEC type a(b)
Pn 2 RCs CPU capacity of RU n
P0 75 RCs CPU capacity of CU
�n 50 Mb/s non-MEC network load at BS n
�a(b)
n 10 Mb/s MEC type a(b) network load at BS n

⇤ Cost in units of account or nominal monetary units

TABLE I: Model parameters; see §VI-A for justification.
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Fig. 4: vRAN (top) vs. MEC centralization (bottom).

and, motivated by our previous experiments with OpenFace,
⇢a = ⇢b = 0.1 (equal to ease presentation) with Dth = 1 ms.

Quantifying computing and routing cost is challenging as it
depends on the hardware, leasing agreements, and so on. How-
ever, note that in our problem the function placement decisions
are determined by the relative values of the computing cost
parameters across RUs and CU (↵0, �0 and ↵n, �n), and the
ratio of computing over routing cost (�). Hence, we perform
our analysis using relative values for a, � and �. According to
[2], the equipment cost of a D-RAN BS is estimated to $50K
whereas the respective cost of a C-RAN BS (i.e., RU with Split
4, Fig. 1) is $25K. Therefore, we consider that CU is twice
cost-efficient for function instantiation i.e., ↵0 = ↵n/2; and
we set, unless otherwise stated, ↵n = 1 8n 2 N , to simplify
the discussion. The main advantage of the CU processing cost
compared to RUs comes from cooling, CPU load balancing,
etc. Based on [5], we estimate this cost to be �0 = 0.017�n

(linear regression in [5, Fig.6a]). If we take as reference the
processing cost at RU, then �0 = 0.017 and �n = 1. Finally,
unless otherwise stated, we set ✓ = 1 for the delay cost.

B. vRAN and MEC Centralization Degree
We first assess the centralization degree of both vRAN and

MEC and its impact on the system cost when using MvRAN.
We thus present in Fig. 4 the degree of centralization of
vRAN and MEC functions for a wide range of CU processing
capacity P0 values (y-axis) and MEC network load values
�

a
n = �

b
n, 8n 2 N (x-axis). The legacy (non-MEC) network

load is considered 50 Mb/s. The top and bottom plot show,
respectively, the percentage of vRAN functions and MEC
functions placed at the CU (centralization degree).

There are two easy distinguishable areas in these plots: (i)
low MEC network load and high computational capacity (top
left corners), and (ii) high network load and low computational
capacity (bottom right corners). The optimal configuration
provided by MvRAN is very intuitive in these two areas;
namely, (i) high vRAN and MEC centralization in the for-
mer, and (ii) high vRAN and MEC decentralization in the
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Fig. 5: Computation costs (top) vs. delay costs (bottom).

latter. In between, we can observe a wide operational regime
where vRAN functions are highly decentralized whereas MEC
functions are centralized in the CU.

From these results, we can conclude that we have three main
operation areas: two extreme regimes, namely low network
load and high computing capacity; and high network load
and low computing capacity, that render a similar solution
across topologies (max. vRAN centralization and D-RAN,
respectively); and an area where the functions placement is
mixed and highly dependent on the topology. In the latter we
can even observe cases where some RUs implement all the BS
functions but still the MEC functions are placed at the CU.

Fig. 5 shows the computational cost V (x,y) at the top
plot and the delay cost Db

(yb
) at the bottom for the network

configurations of Fig. 4. The results shown in the first plot
are rather intuitive when are compared to Fig. 4 (top): higher
vRAN/MEC centralization degree yields reduced compute
costs, particularly under low network/compute demand. In
order to analyze the delay costs (Fig. 5 bottom), we revisit
Fig. 2, which shows that the Italian topology has in general
lower path delays with respect to the other two networks
(Swiss having the highest delays). This explains the noticeable
delay cost differences across the three networks in the top left
corner (high computational capacity and low MEC network
load) of the three lower plots in Fig. 5. When the MEC
network load increases—and especially for low computational
capacity values—there is a region of values where the de-
lay cost drastically improves for both Swiss and Romanian
topologies, while it remains low for Italian. Remarkably, this
coincides with a pronounced increase in computational cost
(top plot), which is in turn caused by an increase in vRAN
decentralization. The latter is necessary, despite the compute
cost increase it induces, in order to release compute resources
for the heavy MEC load.

C. Variable Computational and Delay Costs
We next evaluate the impact that different delay and com-

puting cost parameters have on the centralization degree of
vRAN and MEC functions when using MvRAN. To this aim,
Fig. 6 shows the percentage of vRAN and MEC functions that
are centralized (centralization degree) for a wide set of delay
cost weights ✓ and compute costs �n = � when ↵0 = ↵n = 0

to focus on compute costs that are directly proportional
with network load. For this analysis we fix the MEC and
background network load to 10 and 50 Mb/s, respectively,
and the CU capacity to 75 RCs. The figure depicts three
regimes: (i) high delay and low computing cost parameters
(top left area), with low vRAN and MEC centralization degree
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Fig. 6: Sensitivity analysis of delay costs (✓) over compute costs �.

as we are prioritizing having MEC functions closer to the
RUs to improve delay and in this regime compute pooling
has relatively less benefit; (ii) low delay and high computing
cost parameters (bottom right area), with high vRAN and
MEC centralization as we are in the opposing case, i.e., higher
computing gains yield higher benefits from compute pooling
compared to the overall cost gain that improving delay would
attain; and (iii) a regime in between the previous two, where
vRAN has 0% centralization while MEC is highly centralized,
which is explained by the fact that with these cost settings
there is some benefit from computing pool but also some
from delay improvement, and therefore the most balanced
configuration is to release pooled computing resources from
the CU to improve delay of the centralized MEC functions.

D. Impact of Transport Cost
We now assess the impact of routing costs on vRAN/MEC

centralization and overall system cost when using MvRAN.
Fig. 7 presents the percentage of centralized vRAN and MEC
functions (top) and the overall system cost (bottom) for a
range of routing cost 0  �  40 Gb/s�1. Both MEC and
legacy network load is set to 50 Mb/s. When � = 0 we
have no routing cost, and when � = 40 the routing costs are
almost 40 times larger than the computing costs (for the same
network load). We remark that this is a worst-case scenario
(in terms of centralization advantage) because the computing
costs at CU and RU are equal. We compare the MvRAN
solution to C-RAN configuration (all functions placed at CU)
and D-RAN (all functions at RUs). As we did earlier, we still
optimize the routing for these two extreme cases, to make
the comparison fair. We stress again that C-RAN, though
presented for comparison purposes, is not implementable in
these networks due to capacity violations.

Let us focus on the top plot of Fig. 7. As revealed in the
previous subsection, MvRAN places as many functions as
possible at the CU to minimize the total cost when routing
costs are low. Specifically, when � < 0.25 it reduces up
to 2.5 times the cost of by D-RAN. Clearly, given the
selected compute costs, vRAN centralization is beneficial due
to compute resource pooling. Moreover, for low values of �,
C-RAN (which however violates network capacities in these
RANs) yields the lowest cost, but MvRAN noticeable follows
closely (and is implementable). As � increases, there is a
point where MvRAN and C-RAN yield the same system cost
(� = 0.25); and thereafter C-RAN cost increases linearly and
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Fig. 7: vRAN/MEC centralization and system cost for various trans-
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Fig. 8: Overall cost gain relative to MvRAN.

even surpasses D-RAN cost when � > 1. Conversely MvRAN
achieves the lowest cost when � > 0.25, until it converges to
D-RAN (when � = 32 Gb/s�1). From that point on, MvRAN
selects the same configuration as D-RAN.

E. MvRAN Cost Savings

We finally assess the cost savings obtained with our ap-
proach, comparing it to two extreme configurations, namely,
C-RAN and D-RAN. These are two special cases of MvRAN
where the function placement variables are fixed, i.e., routing
is still optimized. Fig. 8 presents the relative cost increase of
both configurations relative to the cost of MvRAN, using the
same CU capacity and MEC load settings. We stress that the
C-RAN configuration is not implementable in our topologies
due to network capacity violations, but the respective cost is
shown in the figure for comparison purposes. The figure shows
that MvRAN always yields better cost than D-RAN, even
when MEC network load is high (as some MEC functions can
still benefit of a cheaper computational processing in the CU).
Conversely, C-RAN might yield better cost in certain setups
(again, this configuration is not deployable in any case), but
MvRAN achieves a comparable cost and moreover C-RAN
becomes unfeasible for a wide range of parameters as the CU
computing nodes starve when the MEC load is high.

VII. RELATED WORK

Next Generation RAN. The C-RAN idea ignited many
research efforts [1]–[3], [5], [6], and was extended to com-
bine dummy RUs with advanced BSs [25], and the sugges-
tion for virtualized RAN [26] that promotes hybrid central-
ized/decentralized architectures. Also, [7] and recently [27]
studied BS function splits different from pure C-RAN in order
to relax its requirements. Other works presented a cost-benefit
analysis [3], [10]–[12], [28], or studied implementation issues
[8], [9]. Our work is aligned with these suggestions, and
optimizes jointly the RAN costs and MEC delay under the
most advanced scenario where a different split can be selected
for each BS. The recent cloudification of RAN enable the
solution of these two problems in the same time-scale (unlike
the dynamic scheduling of the last-hop wireless links).

Computing in RAN: MEC has been introduced to enable
new use cases from vertical industries [13] and support de-
manding services such as those that are envisioned in Tactile
Internet [14]. Prior works have focused on the optimization at
the user side [15], while here we decide how to deploy MEC in
the RAN. In-network processing in RAN (Fog-RAN) has been
studied in [25] where advanced RUs enable cooperative radio
management, and in [29] that designed a joint transmission
and caching policy. Our approach differs fundamentaly from
these works as it considers how in-network processing can be
used for MEC services (not solely for radio tasks), and jointly
deploys the RAN-related and MEC functions.

MEC Optimization: In our recent work we showed that
MEC traffic affects the BS split selection [20], and others
have also emphasized the relation between RAN and MEC
[19]. In practice however, supporting MEC services is an
intricate problem as they induce various compute and network
costs, have low-latency and high-throughput requirements.
These factors compound the joint vRAN-MEC design problem
which is currently unaddressed. Recent proposals for optimiz-
ing MEC include [30], [31] that consider power-constrained
computing latency minimization in a single-user MEC system;
and [32] which minimizes energy consumption in multi-user
MEC systems. To the best of our knowledge, our work is the
first addressing computing and networking delay constraints
that appear in a joint MEC and vRAN design problem. This
unified view is very crucial for emerging applications with
stringent performance requirements needs [14].

Finally, regarding our algorithm, we used Benders’ decom-
position [22] that yields the exact solution of the problem.
While this method does not offer convergence time guarantees,
we found that in practice converges very fast for the problems
at hand. Faster solutions could, perhaps, be achieved using
Lagrange-based or Integer relaxation methods, or approxima-
tion techniques; yet, for this network design problem it is
reasonable to prioritize optimality over solution speed.

VIII. CONCLUSIONS

Recent advances in the cloudification of BSs allow the joint
design of both vRAN and MEC architectures (in the same time
scale), and create new opportunities for the design of next
generation cellular systems that support services of the Tactile
Internet. Motivated by these developments, we provide a novel
optimization framework for deciding how to select the function
split for each BS, where to place the MEC functions, and how
to route the data in the shared fronthaul network. We measure
the compute, memory, and communication requirements of a
typical MEC service (OpenFace) and optimize its deployment
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in three actual RANs. Our experimentally-validated framework
selects indeed a hybrid vRAN design showing that C-RAN is
not always optimal in terms of cost, and that D-RAN is not
always preferable for minimizing MEC delay.
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