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Abstract—Virtualized Radio Access Network (vRAN) architec-
tures constitute a promising solution for the densification needs
of 5G networks, as they decouple Base Stations (BUs) functions
from Radio Units (RUs) allowing the processing power to be
pooled at cost-efficient Central Units (CUs). vRAN facilitates
the flexible function relocation (split selection), and therefore
enables splits with less stringent network requirements compared
to state-of-the-art fully Centralized (C-RAN) systems. In this
paper, we study the important and challenging vRAN design
problem. We propose a novel modeling approach and a rigorous
analytical framework, FluidRAN, that minimizes RAN costs by
jointly selecting the splits and the RUs-CUs routing paths. We
also consider the increasingly relevant scenario where the RAN
needs to support multi-access edge computing (MEC) services,
that naturally favor distributed RAN (D-RAN) architectures.
Our framework provides a joint vRAN/MEC solution that
minimizes operational costs while satisfying the MEC needs. We
follow a data-driven evaluation method, using topologies of 3
operational networks. Our results reveal that (i) pure C-RAN is
rarely a feasible upgrade solution for existing infrastructure, (ii)
FluidRAN achieves significant cost savings compared to D-RAN
systems, and (iii) MEC can increase substantially the operator’s
cost as it pushes vRAN function placement back to RUs.

I. INTRODUCTION

The increasing mobile data traffic and the new demanding
services ranging from augmented reality to Industry 4.0 appli-
cations, challenge the performance of Radio Access Networks
(RAN) and induce unprecedented expenditures to mobile
operators. 1 It is apparent today that methods such as the
densification of base stations (BS) and the over-provisioning
of network links, albeit necessary, cannot address this problem
in its entirety; and therefore new RAN solutions are required.

Distributed architectures (D-RAN) used in 3G/4G are cost-
inefficient for dense networks due to their expensive radio
units, and because they do not facilitate resource pooling. On
the other hand, centralized RAN (C-RAN) architectures that
have recently gained momentum, relocate most BS functions
from low-cost Radio Units (RUs) to a central unit (CU) [1].
RUs perform physical-layer tasks and exchange I/Q radio
samples with the CUs through the fronthaul network. This
reduces costs [2]–[5] and improves performance through the
central control of tasks such as interference management [6].
However, C-RAN’s stringent latency and bandwidth require-
ments are hard to meet in most RAN deployments nowadays
[4], while clean-slate fronthaul designs are very costly [7].

When such pure distributed (D-RAN) or fully centralized
(C-RAN) solutions fall short, a hybrid RAN design where
only some BS functions are centralized might be more suitable

1For example, China Mobile reported for 2014 115.1% increase in mobile
traffic, but 10.2% profit reduction (Proc. 1st IEEE 5G Summit’15).

[4], [8], [9], [11]. Indeed, we see today a flurry of activities
in this space by standardization bodies such as the IEEE 1914
WG and 3GPP RAN3 [12], [13]. These efforts build upon the
recent softwarization and cloudification of C-RAN through
SDN/NFV (Software-Defined Networking/Network Function
Virtualization) tools. This enables operators to determine the
centralization level (functional split) of the so-called virtual
RAN (vRAN) functions for each RU and in a way that
accounts for the available network resources and user demand.
This fine-grained network management approach is considered
very important for the success of 5G systems [12]–[14].
Nevertheless, designing the vRAN architecture is a novel

and particularly challenging problem: each configuration has
different bandwidth and latency requirements for data transfers
across the function locations; involves different amounts of
resources (computing power, link capacities); and induces
different costs and performance benefits.

Despite the interest of industry and academia [7], [9], [12]–
[14] however, we currently lack a methodology for designing
vRANs. At the core of this intricate problem lie the decisions
for selecting the function splits and the CUs-RUs routing paths
which, clearly, should be jointly devised. Indeed, the optimal
function placement for each BS depends on the capacity and
latency of the RU-CU network path, which can only be known
after the paths for the entire RAN are selected. On the other
hand, finding the optimal path requires knowledge of the flow
requirements in terms of volume and latency, which depend
on the functional split of each BS. This coupling makes a
traditionally challenging routing problem even harder due to
the multiple split choices per BS.

The vRAN design problem is further compounded by the
advent of (multi-access) edge computing (MEC) [15], a busi-
ness model where operators lease computing and network
resources to vertical sectors, e.g., e-health industry. MEC ser-
vices target ultra-low latency and high-bandwidth applications
and therefore are mainly deployed close to users; and this,
in turn, presumes a full-stack D-RAN implementation [16].
Thus, there is an inherent tension between MEC and vRAN
which aims at the highest possible centralization of the RAN
functions. Given the importance of MEC services (a new
revenue source for operators) it is imperative to jointly design
them with vRAN, in order to ease this tension and ensure that
their performance will meet the expectations set in 5G.

Contributions. In this work we propose FluidRAN, a
rigorous analytical framework for the optimized design of
vRAN networks. We model the BS operation as a chain of

functions that successively process the traffic to/from the users.



Some of these functions (e.g., PDCP in LTE systems) can be
implemented in virtual machines (VMs) at the RUs or CUs;
while others (e.g., turbo(de)coding in LTE systems) require
specific hardware. The function implementation induces a
computing cost that may vary across RUs and CUs, and
similarly the selected paths affect the data transfer expenses.
Our framework yields the vRAN configuration (splits and
paths) that minimizes the aggregate operator expenditures.

In order to obtain practical insights, we present and ana-
lyze datasets from real backhaul/RAN instances in different
countries. We find that these networks do not have a regular
structure (e.g., a ring or star topology), exhibit large variation
in the RUs-CUs distances, and are highly diverse in terms of
link capacities. We then apply our FluidRAN design to these
networks and compare the vRAN cost with the respective C-
RAN and D-RAN benchmark values. We use measurement-
based system parameters (e.g., for the CU/RUs computation
costs) and further perform a thorough parameter-sensitivity
analysis to characterize their impact on vRAN.

Our contributions can be thus summarized as follows:

• Optimization Framework. To the best of our knowledge, this
is the first work introducing an analytical framework for the
vRAN design by considering the network and computing
resources, and the splits’ requirements. Our solution opti-
mizes the placement of vRAN functions jointly with the
data routing; and we leverage the Benders’ decomposition
method to enable its derivation for large systems.

• Joint vRAN and MEC Design. We analyze and model the
inherent tension among vRAN and MEC. Our framework is
extended to jointly decide the placement of MEC services
and vRAN functions, yielding a configuration that balances
performance benefits and associated costs.

• Performance Evaluation Using Real Networks. We analyze
3 backhaul/RAN topologies of different operators, and use
market data for costs and 3GPP specs. We show that there
is not a one-size-fits-all vRAN configuration and that in
practice packetized CPRI-based C-RAN [8] is rarely a
feasible solution; on the other hand, FluidRAN, provides
significant cost benefits compared to D-RAN.

Paper organization. §II discusses the industry background
and our datasets, and introduces the model. §III provides
the problem’s formulation and §IV its solution method. §V
proposes the joint optimization of vRAN and MEC, and §VI
presents a thorough data-driven evaluation of FluidRAN. We
review the literature in §VII and conclude in §VIII.

II. MODEL AND PROBLEM STATEMENT

A. Background and Data Analysis

There are several levels of centralization [12], but the
key splits are those in Fig. 1. Split 1 does not have traffic
overheads, enables the co-location of L3 (NAS, RRC, IP)
and L2 (PDCP, RLC, MAC) tasks of BSs, and enhances user
mobility management. Whenever a CU is available, essentially
there is no reason not to have split 1. Split 2 improves
hardware utilization, enables multi-cell coordination for CoMP
and eICIC, but has significant traffic overheads and an order
of magnitude tighter delay bound (for data transfers among
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Fig. 1: Bandwidth and latency requirements of main splits; function
f2 requires f1, and placement of f3, f0 is fixed [12]; λ is the traffic.

function locations). Finally, split 3 (C-RAN) consumes very
high bandwidth (which is load-independent), has extremely
low delay bounds, but maximizes spectrum efficiency and
hardware usage [8]. Finally, regarding the fronthaul, the ex-
pensive point-to-point links are expected to be replaced with
packet-based shared links [8], [12], [13].

We studied the backhaul/RANs from operators in Romania
(denoted R1), Switzerland (R2), and Italy (R3), shown in Fig.
2(a)-(c), and we obtained the following insights. First, the RAN

configurations can be very heterogeneous. The RANs have up
to 200 RUs; R3 has only fiber links, R2 mainly wireless links
and R1 fiber, copper and wireless links. The networks differ in
the number of paths connecting each RU with the CU location.
R1 has high path redundancy with a mean (median) value of
6.63 (7) paths, while R3 has often only 1 path (mean 1.6).
Clearly, there cannot be a one-size-fits-all RAN split. Second,
these RANs do not have a typical (e.g., tree) structure. Some
RUs are placed as far as 20Km (R3) and 10Km (R2 and R1)
while others are in 0.1Km distance from the CU. This renders
heuristic or greedy routing policies inefficient.

Third, the RUs and CUs are connected with diverse links

having capacity that ranges from 2000Gb/s down to 2 Gb/s for
R3 and 1.25Gb/s for the wireless links of R2. The capacity
differences in conjunction with the different link lengths create
variation in link and path delays. Fig. 2(d)-(e) presents the
eCDF of delays, calculated with a typical store-and-forward
switching model that also includes transmission and propaga-
tion delays.2 We observe that: (i) the delay might be up to
40 times higher in some links; (ii) a large number of RUs
(different for each RAN) do not support C-RAN (split 3).

B. Model Preliminaries

Fronthaul Network. We consider a RAN with a set N of
N RUs and 1 CU.3 These are connected through a packet-
based network G = (I, E), where I is the superset of
routers, CU (node 0) and the RUs; and E is the set of
links connecting these elements. Each link (i, j) ∈ E has
capacity cij (Mb/s), and introduces delay dij (secs). Let
p := {(0, i1), (i1, i2), . . . , (iL, n) : (i, j) ∈ E} denote a CU-
RU n path; Pn is the set of all RU n paths and P=∪N

n=1Pn

the set of all CU-RUs paths. Each p ∈ P is described by
the aggregate delay dp of its constituent links. There is an
average data transfer cost due to consumed energy, leasing

2We conservatively used 12000/cij , 4µs/Km (cable) or 3µs/Km (wireless),
and 5µsecs for transmission, propagation, and processing delay, respectively.

3We consider 1 CU, as in practice the RUs are assigned to CUs before split
decisions; and most often there is 1 CU location [18].



(a) Romania topology (R1). (b) Swiss topology (R2). (c) Italy topology (R3).
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Fig. 2: (a)-(c): Three actual RANs in Europe: red dots indicate the RUs’ locations; black dots the routers/switches; and green dot the CU
location which has been placed at the EPC (most central position). (d)-(e) The eCDF of link and path delay in these topologies.

costs, equipment utilization, etc. We denote γp the cost for
path p (monetary units/byte) and define the routing cost vector:

γ = (γ1, γ2, . . . , γ|P|) .

RAN Functions. The RAN operation is modeled as a chain
of 4 functions: f0, f1, f2, and f3 [12]. Function f0 corresponds
to the basic radio tasks (analog processing, etc.) and it is placed
at RUs. Assuming LTE, f3 corresponds to PDCP and above
functions and is always placed at the CU (whenever there is
one available). On the other hand, f2 (RLC and MAC) and
f1 (all PHY functions not in f0) are placed either at RUs or
CU, and this decision is devised independently for each RU.
The function placement sets the delay-bandwidth requirements
between the CU and each RU, Fig. 1. In vRAN f2 and f1
can be implemented in virtual machines (VMs). The cost for
initiating and using a VM depends on the hardware. CUs are in
central facilities and use high-end servers; hence this cost will
be lower compared to RUs [3]. We denote with αn (monetary
units) the average (offset) cost for instantiating a VM in RU
n (due to cooling, leasing fees, etc.), with βn (monetary units
per cycle) the average cost for serving each request; and define
the respective parameters α0, β0 for CU [17]. The computing

cost vectors are then:

α = (α0, α1, α2, . . . , αN ), β = (β0, β1, β2, . . . , βN ) .

We denote with ρ1 and ρ2 the (nominal) processing loads
(cycles per Mb/s) of f1 and f2, respectively. Moreover, each
RU n and CU have processing capacity Pn and P0 (cycles),
shared by the VMs. When the load is below these bounds, a
constant (and very small) processing delay is induced.

Demand. We focus on the downlink but our study can be
extended to include uplink. Each RU n serves the requests of
users that are generated by an i.i.d. process {Λn(t)}

∞
t=1, with

E[Λn(t)] = λn (Mb/s) and we denote the vector λ = (λn :n∈
N ). The requests at RU n create an aggregate flow emanating
from the CU routed to RU n. Hence, the RAN operation can
be modeled as a multi-commodity flow problem where the
flows depend on the placement of RAN functions.

Fig. 3 depicts the detailed system model.

C. Problem Statement

The objective of the operator is to select the vRAN configu-
ration that will satisfy the users’ demand while minimizing the
aggregate expenditures. The latter, in such virtualized systems,
are mainly due to computing and data routing costs [3],

[5]. Several trade-offs arise here. On the one hand, placing
the functions at RUs reduces the network’s load and hence
the routing costs. On the other hand, aggregating the RAN
functions at the CU reduces computing costs (economics of
scale) and offers centralized control that can improve the
network’s performance, e.g., through sophisticated interference
management techniques. However, some splits have very tight
delay constraints and create high fronthaul traffic, while the
CU might not have enough computation power to accommo-
date all RAN functions. The operators’ decisions need to be
fine-grained, i.e., per RU, and consider all the above aspects.
We formally state the RAN design problem as follows:

FluidRAN Design Problem (FRD): Given the anticipated
demand λ; a network G = (I, E) with links capacities and
delays; computing and routing costs, α, β and γ, determine:

• service chaining: where to place functions f1, f2 for each
RU n ∈ N and the CU;

• service provisioning: how to route user traffic from the CU
to the associated RU;

so as to serve the users request with the minimum cost.

We formalize and solve FRD in §III and IV, respectively and
we extend it for the case of MEC services in §V.

III. FLUIDRAN DESIGN

Function placement. We define the decision xn = {0, 1}
to deploy or not, function f1 in RU n, and the deployment
decision yn = {0, 1} for f2; x0, y0 = {0, 1} are the respective
decisions for the CU. When a function is deployed at the CU
it can serve many RUs (if needed). Due to their requirements
for specific hardware and their bandwidth-delay needs, f0 and
f3 are always placed at the RUs and CUs, respectively. We
define the service placement vectors:

x = (x0, xn ∈ {0, 1} : n ∈ N
)

, y =
(

y0, yn ∈ {0, 1} : n ∈ N )

Due to the chain structure of the RAN functions, f1 cannot
be deployed at the CU unless f2 is also placed there, hence

G=(I,E)
. . . 
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Fig. 3: Detailed system model for FluidRAN.



x0 ≤ y0. Similarly, f2 cannot be deployed at RU n unless f1
is there, hence yn ≤ xn. Moreover, we need to deploy each
function either at the CU or at the RU, hence:

xn + x0 ≥ 1, and yn + y0 ≥ 1, ∀n ∈ N

where we have inequality constraints (instead of equality) as
each RU might implement f1, f2, independently of other RUs.

Routing decisions. We denote with r
(n)
p the traffic (Mb/s)

emanating from CU and routed over path p ∈ Pn to RU n,

and we define the routing matrix r=(r
(n)
p , p∈P, n∈N ). The

routing decisions need to respect the link capacities:
∑

n∈N

∑

p∈Pn

r(n)p Iijp ≤ cij , ∀ (i, j) ∈ E ,

where parameter Iijp ∈{0, 1} indicates whether path p includes
link (i, j). Finally, we consider a packet-based network [8],
[12] where multiple paths can be selected, as long as it holds:

∑

p∈Pn

r(n)p = Sn, ∀n ∈ N ,

where Sn is the data flow for RU n (Mb/s) and depends on
the traffic λn and the function deployment (see Fig. 1):

Sn(xn, yn) = xnQ1n − ynQ2n + (1− xn)Q3 , (1)

with Q1n = 1.02λn+1.5, Q2n = 0.2λn+1.5, and Q3 = 2500.
Note that when both f2 and f1 are deployed at CU (xn, yn =
0; split 3), the bandwidth is independent of λn.

Delay constraints. For each path p the flow r
(n)
p cannot

be non-zero if its delay dp exceeds the respective delay
threshold [12]. Therefore, the function placement decisions
x,y determine which paths are eligible for each split. To
capture this dependency, let us first partition the set of paths as
follows: set PA

n ⊆ Pn of paths with delay larger than 30msec;
set PB

n ⊆ Pn of paths with delay larger than 2msec; and set
PC
n ⊆ Pn of paths with delay larger than 0.25msec. Obviously,

it holds PA
n ⊆ PB

n ⊆ PC
n . Then, for split 1 (xn = yn = 1)

we need to set all flows in paths of PA
n equal to zero, for split

2 (xn = 1, yn = 0) set equal to zero all flows in PB
n , and for

split 3 (xn = yn = 0) zeroize all flows in PC
n .

Objective function. The goal of the network operator is to
minimize its costs while satisfying the users’ demand. For the
data transfer average cost we consider a basic linear function:

Up(r
(n)
p ) = γp

∑

n∈N

r(n)p , p ∈ P . (2)

The computing costs depend on the functions placement.
When f1 and f2 are deployed at RU n the cost is:

Vn(x,y) = αn(xn + yn) + (βnρ1λn)xn + (βnρ2λn)yn , (3)

and when they are deployed at the CU:

V0(x,y) = α0(x0 + y0) + β0ρ1
∑

n∈N

λn(1− xn)+

+ β0ρ2
∑

n∈N

λn(1− yn) , (4)

where the last terms indicate that when an RU does not

implement a function this load is shifted to CU. Note that
for the objectives we consider constant (yet, different) cost
parameters as the loads (routing or processing) are strictly
confined by the respective capacity bounds. This standard
approach [16], [17], [24] is also validated by measurements
(see §VI). We thus can formulate the FDR problem:

Problem 1 (FluidRAN Design Problem: FRD).

min
x,y,r

JF = V0(x,y) +
∑

n∈N

Vn(x,y) +
∑

p∈P

Up(r
(n)
p ) (5)

s.t. x0 ≤ y0 , yn ≤ xn, ∀n ∈ N (6)

xn + x0 ≥ 1, yn + y0 ≥ 1, ∀n ∈ N (7)

λn(xnρ1 + ynρ2) ≤ Pn, ∀n ∈ N (8)

N∑

n=1

λn(ρ1(1−xn)+ρ2(1−yn))≤P0 (9)

xn, yn, x0, y0 ∈ {0, 1}, ∀n ∈ N (10)
∑

p∈Pn

r
(n)
p = Sn(xn, yn), ∀n ∈ N (11)

∑

p∈PA
n

r
(n)
p ≤M(2− xn − yn), ∀n ∈ N (12)

∑

p∈PB
n

r
(n)
p ≤M(1− xn + yn), ∀n ∈ N (13)

∑

p∈PC
n

r
(n)
p ≤M(xn + yn), ∀n ∈ N (14)

∑

n∈N

∑

p∈Pn

r
(n)
p I

ij
p ≤ cij , ∀(i, j) ∈ E (15)

r
(n)
p ≥ 0 ∀p∈Pn, ∀n∈N . (16)

where M >> 0 and (12)-(14) capture the split and path-delay
coupling explained above. FRD’s complexity is discussed next.

Theorem 1. FRD Complexity. FRD is NP-hard to solve.

Proof. In a multi-dimensional multiple-choice Knapsack prob-
lem (MMKP ) [19], there are n groups of items and m
types of resources; each group i has li items; each item j
of group i has value vij and requires rijk units of type-k
resource. The goal is to pick one item from each group so
as to maximize the value of collected items subject to the
constraints for each resource. We show next a polynomial
reduction of our FRD MMKP ≤P FRD to this Knapsack
version via restriction. Consider an instance of FRD where
(i) all path delays are very small; (ii) all link capacities exceed
the traffic; (iii) and Up = 0, ∀p. For every xn, yn, n ∈ N , we
can trivially find a solution rp. We now introduce the binary
configuration variables: un, vn, wn, n ∈ N , with un = 1 if
f1, f2 are placed at RU n; vn = 1 if f1 is placed at RU
n and f2 at CU; and wn = 1 if both f1, f2 are placed on
CU. Obviously, it should hold un + vn + wn = 1 for every
n (representing the Knapsack variables), while the processing
constraints with upper bounds P0 and Pn, ∀n (representing the
Knapsack constraints) can be written as linear combinations of
these variables, and the same holds for the objective function
(for fixed routing). Then, FRD becomes a MMKP problem
with li = 3, ∀i, m = N +1, and if we could solve the former
in polynomial time we could solve the latter as well.



Next, we introduce a solution method for FRD. It is im-
portant to stress at this point that our model and solution are
generic and can be easily extended for scenarios where, e.g.,
the routing cost function is strictly convex on the data volume
[23], the processing cost is piecewise linear on λ, and so on.

IV. SOLUTION METHODOLOGY: ASKING BENDERS’ HELP

For large networks, FRD computational complexity in-
creases substantially. It is thus important to devise a method-
ology that expedites its solution. To this end, we leverage the
Benders’ decomposition method [20] that separates FRD in
smaller subproblems: one with the “complicated” variables and
one with the continuous variables. This decomposition yields
two meaningful subproblems, namely the routing optimiza-

tion problem and the function placement problem.

A. Benders’ Method at-a-glance

We briefly overview Benders’ method [21] using an abstrac-
tion of the FRD problem (with a slight abuse of notation):

(P) : min
x∈X ,y∈Y,r∈R

cT1 x+ cT2 y + cT3 r

s.t. Ax+By + Γr ≤ K,

where x and y are the vectors of the integer variables with
X and Y the respective feasibility sets, i.e., (6)-(10); r the
continuous variables constrained in R defined by (15)-(16);
and A, B, Γ and K the matrices of constraints coupling the
discrete and continuous variables, i.e., (11)-(14). The main
idea in Benders’ method is to use the equivalent formulation:

min
x̄∈X ,ȳ∈Y

{

cT1 x̄+ cT2 ȳ +min
r∈R

{cT3 r : Γr ≤ K −Ax̄−Bȳ}
}

.

The inner minimization problem, which is defined for fixed
variables x = x̄ and y = ȳ, is an LP solvable in polynomial
time. By the strong duality theorem [27], we use its dual:

min
x̄∈X ,ȳ∈Y

{

cT1 x̄+ cT2 ȳ+ (17)

+ max
π∈Rm

+

{πT (K −Ax̄−Bȳ) : πTΓ ≤ c3}
}

.

This formulation reveals the method’s philosophy. We sub-
stitute the inner maximization problem (slave) with a continu-
ous variable θ. In each iteration τ , the outer (master) problem
is solved and yields the lower bound LB(τ) for (P ) and also
x(τ) and y(τ) which are used in the slave problem. The latter
gives an upper bound UB(τ) for (P ) and a set of cuts, i.e.,
constraints for θ, x and y. These are added in the master
problem which this way is refined and gives an improved
bound LB(τ+1). These iterations terminate when the upper
and lower bounds become equal, i.e., the optimal solution is
reached. The method’s gist is the replacement of the large set

of variables r
(n)
p and constraints in (P ) with a single variable θ

and dual constraints that are gradually added, and the solution
is often obtained before the full constraint set is reconstructed.

B. Decomposition of FRD

Applying this idea to FRD, we iteratively place the functions
and then optimize routing for this configuration. In each round

the JF is improved. In detail, the slave routing problem is
obtained if we fix the binary variables of FRD to x̄, ȳ:

PS(x̄, ȳ) : min
r≥0

∑

p∈P

γp
∑

n∈N

r
(n)
p (18)

s.t.
∑

n∈N

∑

p∈Pn

r
(n)
p I

ij
p ≤ cij , ∀ (i, j) ∈ I (19)

∑

p∈Pn

r
(n)
p = Sn(x̄n, ȳn), ∀n ∈ N (20)

∑

p∈PA
n

r
(n)
p ≤M(2− x̄n − ȳn), ∀n ∈ N (21)

∑

p∈PB
n

r
(n)
p ≤M(1− x̄n + ȳn), ∀n ∈ N (22)

∑

p∈PC
n

r
(n)
p ≤M(x̄n + ȳn), ∀n ∈ N (23)

The dual of PS can be succinctly written as follows:

PSD(x̄, ȳ) : max
π

g(π, x̄, ȳ) s.t. HTπ ≤ γ, (24)

where γ = (γp, p ∈ P), H is set by the objective and
constraints (19)-(23), π is the matrix of the |E| + 4|N | dual
variables (one for each constraint in PS), and the dual function:

g(x̄, ȳ,π) =
∑

(i,j)∈I

cijπ1ij +
∑

n∈N

Sn(x̄n, ȳn)π2n−

∑

n∈N

M(2− x̄n − ȳn)π3n −
∑

n∈N

M(1− x̄n + ȳn)π4n−

∑

n∈N

M(x̄n + ȳn)π5n (25)

.
The master function placement problem is:

PM (C1, C2) : min
x,y,θ

V0(x,y) + θ +
∑

n∈N

Vn(x,y) (26)

s.t. x0 ≤ y0 , yn ≤ xn, ∀n ∈ N (27)

xn + x0 ≥ 1, yn + y0 ≥ 1, ∀n ∈ N (28)

λn(xnρ1 + ynρ2) ≤ Pn, ∀n ∈ N (29)

N∑

n=1

λn(ρ1(1−xn)+ρ2(1−yn))≤P0 (30)

g(x,y,πm) ≤ θ, ∀πm ∈ C1 (31)

g(x,y,πl) ≤ 0 ∀πl ∈ C2 (32)

θ ≥ 0, x0, y0 ∈ {0, 1}, xn, yn ∈ {0, 1}, ∀n ∈ N (33)

FDA algorithm is summarized in Algorithm 1. It is executed
iteratively. In each iteration τ , we first solve the master

problem in order to obtain the currently optimal configuration
decisions x(τ),y(τ) and the value of the surrogate variable
θ(τ) (step 3). This gives the current lower bound LB(τ) (step
4). Then, we solve the dual of the slave problem PSD using
as input the current variables x(τ),y(τ) (step 5). Accordingly
we update the upper bound, which is set by the value of the
relaxed master problem (step 6). Finally we add a proper cut
in the set of cuts C1 if the dual optimal value is bounded,
or in C2 if the dual is unbounded (which corresponds to a
ray of the dual). These steps are repeated until the upper and
lower bounds coincide. If FRD is unfeasible we will obtain an



Algorithm 1: (FDA) FRD Decomposition Algorithm

1 Initialize: τ = 1; C(0)1 = C(0)2 = ∅; UB(0) = −LB(0) >> 1.
2 repeat

3 Solve problem PM (C(τ)1 , C(τ)2 ) to obtain x
(τ),y(τ), θ(τ).

4 Set LB(τ) = V0(x
(τ),y(τ)) + θ(τ) +

∑
n
Vn(x

(τ),y(τ)).

5 Solve problem PSD(x(τ),y(τ)) to obtain π
(τ).

6 If UB(τ) < UB(τ−1) then UB(τ) =

V0(x
(τ),y(τ))+g(π(τ),x(τ),y(τ))+

∑
n
Vn(x

(τ),y(τ)).
7 If g(π(τ),x(τ),y(τ)) <∞ then

π
m ← extreme point

C(τ+1)
1 = C(τ)1 ∪ {πm}.

8 If g(πτ ,xτ ,yτ )→∞ then

π
l ← extreme direction/ray

C(τ+1)
2 = C(τ)2 ∪ {πl}.

9 τ = τ + 1.

until UB(τ) − LB(τ) → 0;

10 Set the optimal configuration as x
∗ = x

(τ) and y
∗ = y

(τ).

11 Compute the optimal routing r
∗ by solving PSD(x(τ),y(τ)).

unbounded value for the slave problem in the first iteration.

Note that the master problem remains intricate (at least as
hard as the MMKP), but its dimension has been substantially
reduced as we have replaced all the routing variables with
θ. There are several methods to solve it. Among the most
efficient approaches is to remove the integrality constraints (LP
relaxation) for variables x0, y0, xn, yn∀n for the iterations of
Algorithm 1 until the UB −LB gap is reduced enough. This
will make PM a problem solvable in polynomial time. Then,
when we approach to an optimal solution (i.e., |(UB−LB| →
0), we need to re-introduce these integrality constraints so as
to obtain an optimal feasible solution. This method is proved
to preserve the optimality of the problem, since no optimal
solutions are removed by the cuts added during the iterations
that use the relaxed version of PM , and at the same time
significantly expedites the execution of Algorithm 1, e.g., see
[26]. The next theorem describes the FDA performance.

Theorem 2. Optimality of Algorithm FDA. The algorithm

converges to the optimal solution of the FRD problem in a

finite number of iterations.

Proof. The proof follows from the Partition Theorem in [20].
Applying this result in our case, we see that the solution of the
FRD problem can be obtained from the equivalent problem
(using the abstract notation of problem (17), Section IV-A):

min
x,y,θ

cT1 x+ cT2 y + θ s.t. (x,y, θ) ∈ G , (34)

where G is the set of constraints for all variables, created by
the intersection of the constraints in X , Y and the convex hull
of the extreme halflines stemming from the dual slave problem
(which is a polyhedral cone C). The algorithm starts with the
minimal set of constraints G(0) (for C1 = C2 = ∅) and at each
iteration τ adds one extreme halfline of the cone C in G(τ) by

modifying the sets C
(τ)
1 and C

(τ)
2 . Given that there are finite

such constraints (depending on the dimension of matrix Γ in
problem (17)), and since in each iteration we add a different
halfline, the algorithm terminates in a finite number of steps.

The convergence to the optimal solution is ensured by the fact
that, in the worst case, we will reconstruct the initial set G.

V. FLUIDRAN AND EDGE-COMPUTING SERVICES

We explore how FluidRAN is designed when the network
accommodates a MEC service [15], which ideally should be
placed at RUs. A MEC service impacts the RAN design for
the following reasons: (i) might have tighter delay needs (even
1ms [15]) than split 1 (30ms) or split 2 (2ms); (ii) increases the
traffic load for splits 1 and 2, but not for D-RAN (as the MEC
traffic is served at RUs) and interestingly not for split 3 (load-
independent); (iii) increases the computation load and renders
centralization more challenging. In §II.A and Fig. 2(d-e) we
see that real RANs are both delay and capacity constrained,
and hence MEC can significantly affect the eligible splits.

Our framework is tailored to facilitate the joint design of
C-RAN and MEC services. From a modeling perspective,
MEC is a function, say f4, added on the service chain,
i.e., its placement presumes the co-location of f1, f2 and
f3. We denote with zn ∈ {0, 1} the decision to place f4
(and necessarily f3 as well4 ) at RU n (zn = 1); and with
z0 ∈ {0, 1} the decision to have a MEC service at the CU
(that can serve more than one RUs). Let z = (zn, n ∈ N ) be
the MEC placement vector, and λM

n (Mb/s) the MEC demand
at RU n. Clearly, it should hold:

y0 ≤ z0, zn ≤ yn, z0 + zn ≥ 1, ∀n ∈ N (35)

Moreover, the processing constraints need to account for f4:

λn(xnρ1 + ynρ2) + λM
n znρ4 ≤ Pn, ∀n ∈ N , (36)

N
∑

n=1

λnρ1(1−xn)+λnρ2(1−yn)+λM
n ρ4(1−zn) ≤ P0, (37)

where ρ4 denotes the processing load of both f4 and f3. Let
us now discuss three different representative MEC scenarios.

Strict Delay Constraints. When the MEC service has tight
delay requirements, constraints (12)-(14) must be modified
in order to ensure only eligible paths are allowed for each
configuration. Also, eq. (36)-(37) replace (8)-(9) in FRD, and
the new constraint (35) is added. Finally the value of the flow
bound Sn has to be modified accordingly:

Sn(xn, yn, zn) = xn[1.02(λn + λM
n ) + 1.5]− zn(λ

M
n )−

yn[0.02(λn + λM
n ) + 1.5] + (1− xn)2500.

Finally, FRD will have a new objective, say JFM (x,y, r, z),
which includes the MEC cost (for f4) in V0 and Vn.

Delay Cost Component. When the MEC service exhibits
instead some elasticity in delay, the constraints are not affected
but JFM needs to include a delay cost component, thus it is
JFM =

V0(x,y, z) +
∑

n∈N

Vn(x,y, z) +
∑

p∈P

Up(r
(n)
p ) +D(x,y, z),

4Some simple MEC services (e.g., signal estimators) do not interact with
the data plane and can be placed before PDCP; then, zn refers only to f4.



where D(·) is an application-specific cost that increases with
the MEC experienced delay, which in turn depends on the
functions placement and the traffic load.

Centralization - Delay Balance. Finally, some operators
might wish to balance (i.e., fine-tune) the centralization they
achieve and the MEC delay cost that this induces. In this case
the objective of FRD can be augmented by the addition of an
explicit centralization benefit function, i.e., δ ·

∑

n(1− xn) +
(1− yn)+ (1− zn) which rewards the design with δ units for
each function deployed at the CU. By selecting an appropriate
value for this parameter, the operator can balance the MEC
benefits (from reducing delay) and C-RAN costs from placing
functions to the RUs instead of the CU.

VI. PERFORMANCE EVALUATION

We present extensive experiments for the evaluation of
FluidRAN in 10 (sub)figures. Our goal is to:

• Apply FluidRAN to the 3 real-world RANs of Fig. 2;
• Evaluate the impact of computing cost and capacity on FRD,

and compare these results with D-RAN and C-RAN;
• Examine how the routing cost and the traffic load affect the

centralization level, i.e., the optimal RAN split per BS;
• Study the interplay of vRAN with MEC.

A. Methodology and Experiments Setup

In order to obtain realistic results, we use reference values
for the system parameters from prior measurement-based
studies which are also complemented by our own lab measure-
ments. Furthermore we have conducted a thorough sensitivity
analysis for the parameters, beyond their reference values.

We parametrize our model conservatively, with 1 user/TTI,
20MHz BW (100 PRBs), 2x2 MIMO, CFI=1, 2 TBs of 75376
bits/subframe, and IP MTU 1500 B, that is, assuming a high-
load scenario λ=150Mb/s for each BS. We consider a single
Intel Haswell i7-4770 3.40GHz CPU core as our unit of CPU
capacity (reference core, RC). From our own measurements
and those reported in [22], we estimate that, in relative terms,
f3 is responsible for 20% of the total consumption of a
software-based LTE BS, f2 consumes 15%, and f1 up to
65%. From [5], we calculate the (absolute) computing needs
of a software-based LTE BS. In our scenario a BS would
require 750 µs of the reference CPU core to process each 1-ms
subframe [5] which means a 75% CPU consumption; hence,
we set ρ1 = 3.25 and ρ2 = 0.75 RCs per Gb/s, respectively.
Finally, we set P0=100 RCs and sufficient computing on each
RU to run a full-stack BS, i.e., Pn=1 RC , ∀n ∈ N .

In practice, estimating computing and routing costs is
difficult as they depend on the employed hardware, leasing
agreements, and so on. We note however that the function
placement and routing decisions are essentially affected by the
relative values of the computing cost parameters across RUs
and CU (α0, β0 and αn, βn), as well as the ratios of computing
over routing costs (γ). Hence, in the following we estimate
and use such relative values for a, β and γ. According to
[3], the equipment cost of a D-RAN BS is estimated to $50K
whereas the respective cost of a C-RAN BS (i.e., RU with
Split 3, Fig. 1) is $25K. Based on this information, we assume
that the function instantiation cost is approximately half when
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done in the CU, i.e., α0 = αn/2; and we set, unless otherwise
stated, αn = 1∀n ∈ N , i.e., homogeneous RUs, to ease the
analysis. Regarding the processing costs, the main advantage
of the CU compared to RUs comes from the pooling gains
(cooling, CPU load balancing, etc.). Based on [6], we estimate
the CU processing cost to β0=0.017βn (linear regression in
[6, Fig.6a]). If we take as reference the processing cost at RU,
then β0=0.017 and βn=1.

B. Results

1) Centralization Level and Split Selection: Fig. 4 and
Fig. 5 depict the percentage of BS functions f1 and f2 placed
at the CU (centralized) and the number of Benders iterations
till convergence, respectively, in the three topologies of Fig. 2.
The results are plotted for an exhaustive set of combinations of
CU computing capacity and BS load (λ). We observe that full
centralization (C-RAN) is not possible in any of these systems.
R2 has the smallest percentage of functions that can be placed
at the CU, maximum of 58.6%. This is rather expected as it
includes low-capacity wireless links. This under-provisioning
is further evinced by the fact that no solution is feasible (not
even D-RAN) when the RU load is larger than λ = 100 Mb/s.
On the other hand, R1 achieves 93.7% centralization, even for
high traffic (given sufficient CU computing capacity). In the
lower plots, we have (artificially) boosted the links’ capacity.
We see now that both R1 and R3 can achieve full centralization
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(for high CU capacity), and R2 also centralizes 97.2% of the
functions. This numerical test reveals that centralization in R1-
R3 is mainly constrained by the links’ capacity.

2) Impact of Parameters on vRAN Cost: We next perform a
parameter sensitivity analysis using R3 (Italian topology). We
first study the impact of routing cost on vRAN. Fig. 6 shows
both the percentage of centralized RAN functions and system
costs, when αn=βn=1 ∀n ∈ N and α0=β0=1 which is the
worst-case scenario where the CU has no computing efficiency
advantage compared to RUs. The routing cost ranges from
γ = 0 (no cost) to γ = 2 (Gb/s)−1 (twice the computation
cost). Note that γ is defined with reference to computing costs
in order to facilitate comparisons. We compare FluidRAN with
D-RAN and C-RAN deployments. The latter two are special
cases of FRD where the function placement variables are fixed,
i.e., routing is still optimized. We stress that the latter is not
implementable in these systems (as shown in Fig. 4) but the
respective cost is shown for comparison purposes.

Let us focus on the top plot of Fig. 6. For low routing
costs, i.e., γ < 0.25, FluidRAN finds in maximizing the
amount of functions that are centralized (in this case 77.2%)
the most cost-efficient solution. Clearly, even for αn = α0

and βn = β0, centralization is beneficial due to aggregation
(less instantiations costs in CU). If we focus on the bottom
plot we observe that, as we increase γ, there is a point where
FluidRAN and C-RAN yield the same cost (γ ∼ 0.37). If we
further increase γ, the most cost-efficient configuration is to
lower the amount of centralization to 50% (split 2 for all RUs).
This reduces the amount of traffic in the network compensating
in this way the high computational costs of RUs. Noticeable,
the system cost of C-RAN overpasses traditional RAN when
γ > 1. Finally, note that improving the computing efficiency
at CU (i.e., decrease α0/αn) ensures high centralization even
for large γ; and improving the links’ capacity increases the
maximum centralization.

3) Tension between vRAN and MEC: Finally, we analyze
the impact of MEC on the cost and centralization of the 3
topologies. To this aim, we consider 4 services that differ on
their computation needs: MEC 1 (ρ4=0) and MEC 4 (ρ4=1)
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Fig. 7: RAN centralization (top) and cost JF (x,y, r) (bottom) for
different MEC process characteristics and loads. Non-MEC load is
λ = 10 Mb/s for all RUs; P0 = 100 RCs and Pn = 2 for each RU.

are two extreme cases, MEC 2 (ρ4 = 0.0725) and MEC 3
(ρ4=0.25) mimic the computational needs of an optimization
application and a virtual reality application experimentally
assessed in [17] and [28], respectively. In order to highlight
the impact of MEC on the vRAN operation, we plot the cost
only for the latter (i.e., JF instead of JFM ), and for the same
reason we set γ = 0.

Fig. 7 depicts the centralization and system cost of Flu-
idRAN for different MEC loads λnM = λM , ∀n. Observe
that as the MEC load λM increases, vRAN centralization is
reduced in order to alleviate the saturated links. This effect
is pronounced for computation-intensive MEC, since these
services consume also the available CU computing capacity.
Interestingly, computing-intensive MEC can increase multiple
times (e.g., 2 times in R2 and 6 times in 6.5 times in R2)
the system’s expenditures. This increase is not only due to the
new processing demand, which is obvious factor and hence
not depicted in the figure, but also because vRAN must yield
centralization gains when faced with heavy MEC services.
Finally, note that for very high MEC loads all networks opt
for D-RAN and have similar costs JF (since they have similar
number of RUs and γ = 0).

VII. RELATED WORK

Cloud-RAN and Beyond. Initially, C-RAN abbreviated
the term “Centralized-RAN” describing a system where some
BSs’ hardware was collocated; later this evolved so BSs
functions could run in common hardware (Cloud-RAN) [1].
Many works analyzed the cost-efficiency gains of this [2]–[4],
[6], [7]. C-RAN raises unprecedented challenges [4], [7] and
this has spurred many efforts to address them. For example,
[11] proposed BS functional splits different from pure C-RAN
in order to relax the delay and bandwidth constraints for the
network. Other works analyzed the cost-benefits trade-offs of
the splits [4], [12]–[14]; while [8], [9] (among others) studied
the impact of packetization in C-RAN splits. These works
show that a more flexible split in packet-based networks is
possible. We go here a further step and analyze how this split
should be designed in conjunction with routing policies.



Multi-access edge computing. MEC has recently been in-
troduced to enable new use cases from vertical industries such
as automotive sectors [15]. However, the relevant literature on
the topic has focused on the optimization at the user side, e.g.,
[16], while our goal is to decide how to deploy MEC services
within the RAN, from the operator’s perspective.

Network Architectures and Virtualization. The soft-
warization of cellular networks renders them similar to cloud
computing or content delivery systems. Our problem is related
(among others) to the joint server selection and data routing
problem in ISP-CDN networks [23]; and we know that such
joint optimizations outperform respective independent policies
[24]. FRD is a more intricate problem due to the functions’
chaining. This, in turn is related to virtual network embedding
and VNF design problems [25]. Joint routing and split selec-
tion was studied in [10] via heuristics. Nevertheless, in FRD
the functions placement impacts both the routing (by changing
the data transfer needs) and the processing costs. Our novel
analysis caters for these intricacies.

Modeling and Solution. FRD is a challenging problem
due to the coupling of function placement and routing in the
constraints and its objective. For the latter we used an average
cost model as is suitable for such network design problems.
We employed Benders’ decomposition [20] that gives an exact
solution, a method attracting increasing interest [21]. To the
best of our knowledge, this is the first time it is applied in a
problem with function chaining. There are several methods for
expediting Benders’ algorithm which can be directly applied
here [21]. Other possible solutions include facility location
methods, which however require stylized models, and La-
grange decompositions [27] which do not guarantee optimality.

VIII. CONCLUSIONS

The design of RAN lies at the center of our research efforts
to deliver the next generation of 5G systems. To this end,
the latest proposals of industry consortia and standardization
bodies focus on the cloudification of RAN, flexible functions
split, and on packet-based fronthaul routing. Building on these
suggestions, we provide a rigorous mathematical modeling for
the virtualized RAN (vRAN) design problem and a solution
methodology that takes into account its key practical aspects.
The main take-away conclusion of our analysis is that a flexible

vRAN design (FluidRAN) which jointly selects the function

split and routing policy, tailored to the available network and

computing resources, is the optimal way to proceed.
Indeed, using data from actual RAN instances of three

different operators, we showed that upgrading to fully-fledged
C-RAN is most often infeasible, while D-RAN induces higher
costs than vRAN. FluidRAN achieves the maximum vRAN
centralization by selecting the optimal split and routing path
for each RU/CU pair. This fine-grained design approach is
imperative as our data analysis showed that, in practice, RAN

networks can be highly diverse with high or low link capac-
ities, single or multiple CU-RU paths, and different routing
costs. The design of FluidRAN is further perplexed when the
RAN has to support MEC services which favor decentralized
configurations and increase substantially the system costs. Our
framework enables the joint vRAN/MEC design and hence

allows operators to select the vRAN solution that meets their
needs, by balancing costs and benefits.
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