
Network Intelligence in 6G: challenges and opportunities
Albert Banchs

University Carlos III of Madrid
IMDEA Networks Institute

Leganes, Spain
banchs@it.uc3m.es

Marco Fiore
IMDEA Networks Institute

Leganes, Spain
marco.fiore@imdea.org

Andres Garcia-Saavedra
NEC Laboratories Europe
Heidelberg, Germany

andres.garcia.saavedra@neclab.eu

Marco Gramaglia
University Carlos III of Madrid

Leganes, Spain
mgramagl@it.uc3m.es

ABSTRACT
The success of the upcoming 6G systems will largely depend on
the quality of the Network Intelligence (NI) that will fully auto-
mate network management. Artificial Intelligence (AI) models are
commonly regarded as the cornerstone for NI design, as they have
proven extremely successful at solving hard problems that require
inferring complex relationships from entangled, massive (network
traffic) data. However, the common approach of plugging ‘vanilla’
AI models into controllers and orchestrators does not fulfil the po-
tential of the technology. Instead, AI models should be tailored to
the specific network level and respond to the specific needs of net-
work functions, eventually coordinated by an end-to-end NI-native
architecture for 6G. In this paper, we discuss these challenges and
provide results for a candidate NI-driven functionality that is prop-
erly integrated into the proposed architecture: network capacity
forecasting.
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1 INTRODUCTION
The vision for the sixth-generation (6G) mobile systems [7] sets an
extraordinarily high bar for mobile networks, which are expected
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to become general-purpose platforms and provide Smart Connec-
tivity to a plethora of extremely heterogeneous terminals. 6G shall
support entirely diverse classes of services, and do so with out-
standing performance: near-zero latency, apparent infinite capacity,
and 100% reliability and availability will make the communication
infrastructure fully transparent to the applications. Meeting this
ambitious goal requires growing the already substantial complexity
of mobile network architectures to instantly orchestrate physical
resources and Virtual Network Functions (VNFs) across different
network domains, in concertation with time-varying user demand
and multi-tenancy requirements.

Managing the increased complexity of 6G networks with tradi-
tional human-in-the-loop approaches will not be possible anymore.
Instead, technologies that fully automate the network operation
will become the standard, and the success of 6G will vastly de-
pend on the quality of the Network Intelligence (NI) that will run
at schedulers, controllers, and orchestrators across network do-
mains, and de-facto manage the infrastructure. More specifically,
NI comprises the whole set of smart algorithms that will be de-
ployed in 6G networks for automated decision making, adapting
network resources and functions to the time-varying demand and
performance requirements without a need for human intervention.

As in many other research and engineering domains, Artificial
Intelligence (AI) implemented with complex machine learning mod-
els is regarded as a promising approach to design NI solutions. AI
models have proven remarkably effective at addressing complex
tasks, and they thrive on the large amount of control and traffic
data available within network architectures. Indeed, there are mul-
tiple examples of NI tasks in which AI techniques excel, by finding
complex relationships in vast traffic data and using them to support
effective network operation (see [13] for an extensive review).

While early efforts such as those above are compelling, they are
obliged to fit into current network management models, which
were not designed to accommodate AI solutions. Instead, we argue
that a sound integration of AI into the networking landscape will
necessarily entail reshaping the network operation for NI support,
as detailed in Section 2.

Specifically, in this paper we identify and explore two key chal-
lenges that need to be tackled towards structured incorporation of
NI in 6G systems:
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Figure 1: High-level view of the 6G network architecture envisioned by current standardization at O-RAN [11], 3GPP, and
ETSI. “Brains” denote the NI instances located in network orchestrators and controllers, which interact with NFs via closed
loops.

• Design of an end-to-end NI-native architecture. Prac-
tical NI algorithms shall be supported by a network archi-
tecture that is explicitly intended to host and facilitate the
integration of NI. SuchNI-native architecture shall stem from
current standardization trends, and enable the coordination
of the many and varied NI instances deployed across net-
work domains. In particular, this architecture shall: (𝑖) go
beyond centralized orchestration, acknowledging that differ-
ent network functionalities have major reciprocal effects and
NI algorithms do not operate in a vacuum; and, (𝑖𝑖) provide
NI directly at Network Function (NF) level. These points are
discussed in detail in Section 3.

• Development of customizedAI techniques that empower
practical NI. In order to operate in the most effective way,
AI models shall be tailored so as to respond to the specific
needs of network management functionalities. To this end,
AI models must take advantage of the most recent advances
in machine learning to address overlooked design aspects
that are fundamental for NI. Dedicated loss functions, latency
guarantees, or reduced requirements in terms of training and
computational complexity are all relevant aspects, as ana-
lyzed in Section 4.

The two challenges above consider complementary approaches.
On the one hand, a NI-native architecture follows a strategy of
updating the existing network design to best accommodate AI. On
the other hand, the customization of AI looks at how to best adapt
machine learning models to the needs of network functionalities.
The convergence of the two approaches ultimately leads to efficient
development, implementation, and integration of NI in 6G networks,

so as to meet their very high expectations in terms of automation,
performance, sustainability, and reliability.

2 NETWORK MANAGEMENT TRENDS AND
CHALLENGES

In the transition towards their sixth generation, mobile networks
will undergo an architectural revolution, aimed at supporting the
extreme requirements set by future services that will assume perfor-
mance indicators like virtually infinite capacity or perceived zero
latency. Current efforts in standardization reflect this trend and are
pushing a number of distinctive novelties into the mobile network
design, which are summarized in Figure 1 and detailed below.

2.1 Mobile Networks architectural trends
The mobile network architecture is being redesigned for end-to-
end softwarization and cloudification, completing the decoupling
of NFs from the underlying hardware, and granting unprecedented
capacities to control system-wide operations. As shown in Figure
1, a full range of VNFs and containerized Cloud-native Network
Functions (CNFs) will complement traditional Physical Network
Functions (PNFs). In this scenario, a variety of overarching entities
are responsible for the orchestration (i.e., service and network func-
tions lifecycles management, including their instantiation, scaling,
or termination) and control (i.e., the parameter tuning of deployed
network functions according to context changes) of VNFs, CNFs,
and PNFs in different network domains.

At the same time, the atomization of the classical access-core
dichotomy in network domains is paving the road for network
micro-domains that substantially increase the management gran-
ularity of physical infrastructures. Figure 1 shows how distinct
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controllers and orchestrators are expected to operate in the follow-
ing micro-domains: Core, Transport, Edge (running the cloud part
of the RAN), and Far Edge (that includes the radio units and the
fronthaul).

The radical architectural transformations outlined above sum-
marize the current state-of-the-art in standardization initiatives
3GPP [3] and ETSI [12]. Jointly, these evolutions will enable very
fine-grained engineering of network configurations on the fly, so
that the network functions and their allocated resources can be
adapted to traffic demand dynamics and meet strict, heterogeneous
Quality of Services (QoS) specifications. As such, these architectural
changes will support network-on-demand schemes, multi-tenancy
and emerging compelling paradigms for strong service differentia-
tion such as network slicing that will characterize 6G multi-service
settings.

2.2 The role of NI in 6G systems
Fundamental to the optimal operation of the softwarized, cloud-
ified, and atomized network infrastructure will be the Network
Intelligence (NI) responsible for managing the composite mosaic
of network functions and associated resources in presence of a
surging mass of services, tenants, and slices. Given the variety of
network management tasks and the many functions they involve,
each orchestrator or controller shall run multiple NI instances, each
implemented as a pipeline of supple yet effective algorithms that
swiftly detect or anticipate new requests or fluctuations in the net-
work activities, and then react to those by instantiating, relocating,
or re-configuring network functions in a fully automated manner.

By driving these decisions, NI is expected to meet a number of
key targets that include: (𝑖) ensuring that all traffic demands are
accommodated in a timely fashion and in full conformity to QoS
requirements; (𝑖𝑖) maximizing infrastructure and resource reuse
across multiple tenants or slices to reduce operating expenses; (𝑖𝑖𝑖)
taking full advantage of the novel flexibility to compensate for
the reduced performance of equipment where software functions
are parted from vendor hardware; and, (𝑖𝑣) completely eliminating
human intervention, hence fulfilling the vision of zero-touch net-
work and service management in mobile systems [6]. These aspects
are all highly critical, to the point that the success and viability
of 6G systems will largely depend on the quality and appropriate
integration of NI solutions in the network infrastructure.

2.3 Challenges in the integration of NI
Present trends in NI for next-generation network orchestration that
are promoted by major standardization bodies pivot on the notion
of closed-loop Artificial Intelligence (AI) [3, 12]. According to this
paradigm, the NI instances deployed at centralized orchestrators
and controllers work in closed control loops: abiding by the learning
principles of modern AI, they record the context of management
decisions, collect observations about the quality of such decisions
via continuing monitoring, and then use the feedback to improve
future choices. A closed-loop model lets NI apprehend what is
important for an operator in a certain situation, and learn over time
to automate optimal decision making towards the expected targets
(𝑖)-(𝑖𝑣) listed in Section 2.1.

The current, prevailing vision for closed-loop NI contemplates
instances located at centralized orchestrators or controllers in the
control plane that interact with Network Functions (NFs) deployed
in the data plane [8], exemplified by the local NI loops in Figure 1.
This model requires that network state information is gathered
from the different NFs and transported to a central entity, where
they are processed by the pertinent AI algorithms; decisions must
then travel back across the network before they can be enacted.
While present standardization efforts and the associated drafts stop
at this point, we believe that the architectural changes currently
proposed still yield two major limitations, as follows.

First, there is a concrete risk that the latency in data transfer
and decision communication ensuing from a strongly centralized
closed-loop model hinders the effectiveness of NI, and limits its
application in a number of critical network management scenar-
ios. To be effective, many network functionalities must operate at
timescales that are not compatible with the lengthy procedures of
data gathering at NFs, data processing in the control plane, and final
restitution of actions to be implemented in the data plane. In these
cases, the feedback loop between the control and data planes does
not allow the NI to monitor the system in a continuous manner, and
to immediately intervene when required; instead, operators must
just hope that the policies, NFs, and resources already in place are
sufficient to cope with sudden fluctuations in traffic – or otherwise
incur into service disruption and violations of the Service Level
Agreements (SLAs) in place with tenants.

Second, the current architectural models do not allow for any in-
teraction among NI instances, which are left to operate in a vacuum,
in spite of the fact that the actions they take often yield reciprocal
impact. As a simple but representative example, short-timescale
network controllers operate on local resources allocated by orches-
trators in charge of similar decisions at a wider scope and on longer
timescales [5]. Therefore, for NI to operate at its best, it is critical
that NI instances can cooperate to ensure end-to-end synchroniza-
tion, convergence, and global optimality of the zero-touch network
management process.

In order to tackle and remove these limitations, we believe that
architectural changes to 6G networks must necessarily abide by a
NI-native model, a concept that we expound next.

3 A NI-NATIVE ARCHITECTURE
Our proposed mobile network architectural model is summarized
in Figure 2. Its design anticipates the success of current trends that
push automated decisions towards the physical infrastructure, and
natively accommodates intelligence beyond the control plane and
closer to the user plane. The architectural changes above entail a
much deeper integration of intelligence in 6G systems and create a
considerably wider ecosystem of NI instances that populate the net-
work infrastructure. The original hierarchy of NI instances removes
the restrictions of closed-loop models, as presented in Section 3.1.
However, it also creates new needs in terms of coordination, as
discussed in Section 3.2.

3.1 NI across network operation timescales
The architecture in Figure 2 outlines three levels of NI, told apart by
the timescale of their associated management operations. The three



MobiArch’21, January 31-February 4, 2022, New Orleans, LA, USA A. Banchs, et al.

Edge Cloud

CU-CP Service
FunctionsNG-Core…

Private Network   
or Internet

Centralized Cloud

Core

CU-UP

TransportEdge

Midhaul / X-haul Backhaul

RAN SDN

ServicesTransport slices

Real-Time
RAN Controller

Non-Real-Time
RAN Controller

Edge/Fog 
Orchestrator

Controllers

VNF PNF CNF

End-to-End 
Orchestrator

Controllers

VNF PNF CNFVNF PNF CNFVNF PNF CNFPNF

RU

Fronthaul

Radio slices

RIS Controller

PNF PNF

RIS-CP

RISUE/CPE

Far EdgeBeyond EdgeSubscriber

Metasurfaces

NI Orchestration layer

DU

OrchestrationNon-real-time controlReal-time controlOperation timescale

Figure 2: Concept of the proposed NI-native architecture. The three levels of NI operation timescales are set apart by shaded
areas that encompass the network entities belonging to each level; the concept brings pervasive intelligence into the real-time
control domain of the network infrastructure, all the way within NFs. The additional Beyond Edge micro-domain and its
associated entities are highlighted by the dashed line. The novel NI Orchestration layer introduces feedback loops across NI
instances deployed throughout the network, including the new ones implemented at the NF level.

levels are highlighted at the top of the figure, and are described as
follows.

• NI at Orchestrators: in Core Network (CN) deployments,
and for service-related applications running in Private Net-
work (PN) deployments, End-to-End Orchestrators operate
at a global network level, whereas Edge/Fog Orchestrators
focus on broad portions of the mobile edge. The NI inte-
grated into these entities manage functions and resources
at a broad network scope, taking decisions that affect large
sets of Distributed Units (DUs) and Remote Units (RUs) at
once. At this layer, the data traffic is aggregated over a vast
population of User Equipment (UE) and its dynamics vary
relatively slowly. Reconfiguration is performed at timescales
of minutes to hours, and NI must take decisions that endure
large time windows.

• NI at Non-Real-Time Controllers: shifting network func-
tionalities closer to the user and substantially improving
the versatility of Radio Access Networks are long-standing
objectives in the evolution of mobile networks, which will
finally become a reality with next-generation mobile sys-
tems. Here, Non-Real-Time RAN Controllers are responsible
for less time-critical functionalities at a limited number of

sites. Their associated NI operates at a local scope and takes
decisions at timescales in the order of tens of seconds.

• NI at Real-Time Controllers: ambitious 6G targets like
unperceivable latency or pseudo-infinite bandwidth require
data analysis and decision-making at timescales of millisec-
onds or lower. Standardization activities within O-RAN [1]
or FOG-05 [2] expect that the NI deployed within Real-Time
RAN Controllers will ensure fast-timescale functionalities
such as radio scheduling. However, in contrast to the vision
of current standardization bodies, our concept envisions the
integration of NI within NFs themselves, across the Far Edge,
Edge, Transport, and Core micro-domains. In these cases,
NI is implemented much closer to or actually within in the
user plane: instead of injecting direct policies into “dumb”
VNFs, Controllers trigger highly specialized and lightweight
NI algorithms that operate within each NF, enabling, net-
work functionalities to operate close to the line rate. This
approach naturally leads to introducing an original Beyond
Edge micro-domain: there, dedicated Controllers run the NI
that actions Reconfigurable Intelligent Surfaces (RIS), which
effectively turn a traditionally passive environment where
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transceivers react to into a programmable environment that
actively assists in the task of delivering data over the air.

The architectural changes above enable very fast and localized
decision-making, reducing the reaction times of resource reallo-
cation and VNF reconfiguration in response to fluctuations in the
traffic demands and changes of requirements on performance indi-
cators. As a result, it allows surpassing the limitations of closed-loop
models highlighted in Section 2.3. However, these NI instances need
to interact seamlessly to perform at their best, and exchange data
and information so as to mutually improve both their learning and
decision-making processes.

3.2 Cross-domain NI orchestration
To address the need for system-wide NI coordination, our NI-native
architectural model sets forth a structured approach based on an
original NI Orchestration layer. It is responsible for supervising
intelligence in the network architecture as a whole, ensuring the
ideal functioning of each closed-loop NI instance, and overseeing
interactions across closed loops that run NI at different timescales.
The NI Orchestration layer is devoted to two NI management tasks.

• NI algorithm selection: as later explained in Section 4,
multiple variants of the same NI shall be designed by em-
ploying different modelling strategies and adaptive learning
techniques. The NI Orchestrator is then responsible for se-
lecting the best NI algorithm to be run within each NI in-
stance from a predefined range of options. Decisions on the
most appropriate option are based on contextual information
(e.g., the reliability level of the traffic demand predictions),
available system resources (e.g., the computational capac-
ity that can be dedicated to the NI instance), performance
requirements (e.g., the target precision of the algorithm),
and amount of data to be processed (e.g., the lookback for a
forecasting algorithm), concurrently across timescale levels.

• NI instance coordination: the NI Orchestrator must en-
sure the gracious operation of all NI instances operating
at different timescales and in different micro-domains. To
this end, the NI Orchestrator supports the exchange of infor-
mation via dedicated interfaces with the NI instances, and
centrally solve trade-offs that may emerge from conflicting
objectives in the control and data planes, including those
associated with establishing policies (at short timescales)
versus enforcing such policies (at faster timescales). For in-
stance, this is what happens in the case of radio resource
orchestration for bandwidth allocation (policy) versus radio
scheduling within such bandwidth (enforcement), but it is in
fact the case for many of the NI-assisted functionalities that
could be implemented in a mobile network. We remark that
our proposed NI-Native architecture goes beyond federated
learning aspects, and deals with the practical application
of NI in multi-timescale environments where the network
metric shall guide the zero-touch management process.

Thus, the NI Orchestration layer establishes and manages a rich
and organized set of feedback links between the NI at orchestrators,
controllers, and NFs, as highlighted in Figure 2. This allows the NI
Orchestrator to help NI algorithms that run in the data plane to
overcome the intrinsic limitations of their local view and close in
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Figure 3: The DeepCog tailored loss function.

on the optimal point of operation without sacrificing their reactiv-
ity. Similarly, the NI Orchestrator supports the NI algorithms in
traditional End-to-End Orchestrators by feeding them with fresh
local state and decisions at NFs, so that they ensure system-wide
stability without human intervention.

4 NI FOR RESOURCE ORCHESTRATION
While the NI-native architecture above creates an ideal environment
for the integration of AI in mobile network infrastructures, it is only
part of the solution to the problem of imbuing intelligence into 6G
systems. Indeed, it must be complemented by a design of AI models
that meets the specific requirements of network functionalities, so
as to empower NI instances effectively.

In the following, we apply our NI architecture to address resource
orchestration. In particular, we develop a capacity forecastingmodel
that anticipates the optimal amount of resources to be allocated
to network entities at each reconfiguration opportunity. This algo-
rithm builds on the DeepCog approach we proposed in [5] and is
an integral part of the orchestrator operation.

DeepCog addresses the problem of optimizing the utilization of
resources across network slices – a vital aspect for the reliable op-
eration of 6G systems characterized by a very high degree of multi-
tenancy, where strong service guarantees force isolating resources
across slices. Measurement-driven studies show that, already under
today’s traffic demands, ensuring resource isolation among slices
risks to yield unbearable costs for operators, as granting resources
to slices under mildly efficient allocation strategies may require a
six-fold increase of available capacity [10].

In the above scenario, accurately anticipating the capacity needed
to meet the future demand generated by individual slices is para-
mount to the design of systems that are extremely reliable in satis-
fying the complex service requirements that 6G systems will face.
The notion of capacity is deliberately general, as the problem arises
across network domains, where it applies to computing, transport,
or radio resources depending on the target entity, and concerns
timescales ranging from seconds to hours minutes. Unfortunately,
current traffic predictors aim at forecasting traffic demands, and
not the capacity needed to serve them, incurring in very frequent
underestimation errors that lead to Service Level Agreement (SLA)
violations and undermine the reliability of the network [5].

The core of the DeepCog algorithm is the loss function that trans-
lates the forecast load level into a feedback signal that proactively
steers the network configuration to optimal levels. Indeed, the vast
majority of AI models for NI proposed to date employ generic loss
functions such as L1, L2, or Cross Entropy, which do not suit the
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Figure 4: Orchestration cost obtained with DeepCog.

distinctive objectives of each network functionality, hence incur in
a loss-metric mismatch [9]. The loss-metric mismatch implies that
the metrics that shall be optimized, i.e., the quality of service in its
different facets, are not adequately captured by the loss function
measured on network parameters.

To address the loss-metric mismatch in capacity forecasting,
DeepCog employs a customized loss function that is driven by the
monetary value resulting from capacity allocation decisions [4]. As
illustrated in Figure 3, the loss function associates positive forecast
errors to the unnecessary provision of resources, which has a cost
that proportionally increases with the amount of their unused quota
with a slope 𝛾 . Negative errors map instead to insufficient allocated
resources, hence service disruption and SLA violations, which yield
a high economic penalty 𝛽 irrespective of the error.

Figure 4 shows the overall OPEX obtained by orchestrating slices
with DeepCog for real-life measurements data as a function of
𝛼 = 𝛽/𝛾 , which expresses the cost of one SLA violation relative to
that of overprovisioning one unit of capacity [5]. The total OPEX
is expressed as the percent extra-economic fee incurred by the
operator over an oracle that can perfectly predict future demand,
and the number on top of each bar reports the contribution of SLA
violation fees. We observe that DeepCog is very effective, as the
extra cost over a perfect oracle is only around 20%. Furthermore,
DeepCog effectively reduces theSLA violations as their relative cost
to overprovisioning (i.e., the 𝛼 ratio) increases.

5 CONCLUSION
In this paper, we motivated the need for a new NI-native architec-
ture for next-generation (6G) mobile networks. We have further
identified the challenges involved in realizing such an architecture.
As a first step towards addressing such challenges, we have out-
lined the key modules and concepts required to bring NI into mobile

networks in efficient and effective way. To show the potential ben-
efits of our framework, we have focused on a NI-based resource
orchestration solution.
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