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Abstract
The emergence of 5G enables a broad set of 

diversified and heterogeneous services with com-
plex and potentially conflicting demands. For net-
works to be able to satisfy those needs, a flexible, 
adaptable, and programmable architecture based 
on network slicing is being proposed. A softwariza-
tion and cloudification of the communications net-
works is required, where network functions (NFs) 
are being transformed from programs running on 
dedicated hardware platforms to programs running 
over a shared pool of computational and commu-
nication resources. This architectural framework 
allows the introduction of resource elasticity as a 
key means to make an efficient use of the com-
putational resources of 5G systems, but adds chal-
lenges related to resource sharing and efficiency. 
In this article, we propose Artificial Intelligence (AI) 
as a built-in architectural feature that allows the 
exploitation of the resource elasticity of a 5G net-
work. Building on the work of the recently formed 
Experiential Network Intelligence (ENI) industry 
specification group of the European Telecommu-
nications Standards Institute (ETSI) to embed an AI 
engine in the network, we describe a novel taxon-
omy for learning mechanisms that target exploit-
ing the elasticity of the network as well as three 
different resource elastic use cases leveraging AI. 
This work describes the basis of a use case recently 
approved at ETSI ENI.

Introduction
In order to achieve the 5G Key Performance Indi-
cators (KPIs), the most relevant standardization 
bodies have already defined the fundamental 
structure of the 5G architecture. By leveraging 
Software Defined Networking (SDN), Network 
Function Virtualization (NFV) and modularization, 
the new architecture proposed by relevant orga-
nizations such as the 3rd Generation Partnership 
Project (3GPP) or the European Telecommunica-
tions Standards Institute (ETSI) will natively sup-
port the service diversity targeted by the future 
commercial ecosystem [1, 2].

Besides the design of access and core func-
tions, one of the most challenging tasks to be 
accomplished is network management. That is, the 
transition from the rather fixed operations support 

system/business support system (OSS / BSS) capa-
bilities, to a new hierarchy of elements that have 
to deal with a very complex ecosystem of tenants, 
network slices, and services, each one with differ-
ent requirements. In addition to management, 5G 
networks need orchestration capabilities that in 
turn are further divided into two main categories: 
service orchestration and resource orchestration. 
The former deals with the specific virtual network 
functions (VNFs) that compose a network slice, 
while the latter takes care of assigning resources to 
them. Tasks such as deciding whether a VNF shall 
be shared across slices or across tenants, their loca-
tion in a possibly highly heterogeneous cloud infra-
structure, or the number of allocated CPU cores 
are just a few examples of the Management and 
Orchestration (MANO) layer responsibilities.

The design of an efficient multi-service, multi-
slice, and multi-tenant MANO entails challenges 
on both the architectural and algorithmic levels. 
Although the state-of-the-art MANO already pro-
vides baseline functionality, high computational 
resource efficiency is a real challenge today, and it 
is further aggravated by the complexity introduced 
by a 5G architecture based on the infrastructure 
sharing principle of network slicing. Our assertion 
is that an optimized utilization of cloud resources 
in the network, while providing the desired Ser-
vice Level Agreement (SLA) under 5G network 
slicing, can only be achieved if fast and very fine-
grained AI algorithms are designed and integrated 
into the network architecture itself. This allows for 
a more cost-efficient network management and 
orchestration by avoiding both resource under- 
and over-provisioning, which are the main caus-
es of service outages and excessive expenditure, 
respectively.

Resource Elasticity
In order to solve the aforementioned problems, 
we have introduced the concept of resource elas-
ticity for networks [3]. In a nutshell, the resource 
elasticity of a communications system can be 
defined as the ability to gracefully adapt to load 
and other system changes in an automatic man-
ner such that at each point in time the available 
resources match the demand as closely and effi-
ciently as possible. Furthermore, temporal and 
spatial traffic fluctuations in networks require effi-
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cient network resource scaling: the network shall 
adapt its operation by eventually re-distributing 
the available resources as needed, up to the point 
of gracefully scaling the network performance to 
deal with excessive peak demand, thus avoiding  
abrupt decays. Although elasticity in networks has 
traditionally been exploited in the context of com-
munications resources (e.g., when the network 
gracefully downgrades the quality for all users if 
communications resources such as spectrum are 
insufficient), here we address the computational 
aspects of resource elasticity since the virtualiza-
tion and cloudification of networks at the core 
network (CN) and partially at the radio access 
network (RAN), means that the management and 
orchestration of its computational resources have 
now become a key challenge of 5G systems. In 
fact, in contrast with 4G systems, network slic-
ing requires virtualized 5G networks to be able 
to jointly optimize communication and cloud 
resources.

We further consider elasticity in three different 
dimensions, namely computational elasticity in the 
design and scaling of VNFs; orchestration-driven 
elasticity achieved by flexible placement of VNFs; 
and slice-aware elasticity via cross-slice resource 
provisioning mechanisms. These dimensions 
encompass the full operation of the network and 
together they build our proposed elastic manage-
ment and resource orchestration. To that aim, we 
envision a very prominent role for AI, as a tool to 
enhance the performance of elasticity algorithms. 
AI, and in particular machine learning (ML), has 
been proposed as a toolbox for different aspects 
of wireless networks [4]. In the context of elasticity, 
some examples of performance-boosting capabil-
ities that could be provided by AI techniques are 
the following:
•	 Learning and profiling the computational utili-

zation patterns of VNFs, thus relating perfor-
mance and resource availability.

•	 Traffic prediction models for proactive resource 
allocation and relocation.

•	 Optimized VNF migration mechanisms for 
orchestration using multiple resource utilization 
data (CPU, RAM, storage, bandwidth).

•	 Optimized elastic resource provisioning to net-
work slices based on data analytics.
Although by AI we refer to a wide range of 

techniques that could be employed for network 
management and orchestration, in this article we 
focus on three use cases that leverage specific ML 
algorithms, that is, drawing from a subset of the 
whole AI range of techniques, to exploit resource 
elasticity as follows:
•	 A computationally elastic scheduler applying 

deep learning to signal-to-noise ratio (SNR) 
prediction and the reinforcement learning 
technique of contextual bandits for making 
scheduling decisions. 

•	 Slice-aware resource management based on 
traffic prediction using deep artificial neural net-
works (i.e., supervised learning). 

•	 Efficient slice setup using the unsupervised 
learning technique of spectral clustering.
It is worth mentioning that even though these 

three specific examples of AI-based elasticity algo-
rithms utilize ML techniques, the authors believe 
that other AI techniques, not necessarily con-
strained to the ML domain, could also be applied.

The remainder of this article is structured as 
follows. In the following section, we provide a 
description of a prominent architecture for the 
use of AI in the management and orchestra-
tion of future networks proposed by ETSI. Then 
we discuss the application of AI in the context 
of resource elasticity and we elaborate on the 
above mentioned elasticity use cases and the AI 
techniques they employ. Finally, we conclude 
the article.

AI-Enabled 5G Network Architecture
In response to the industry demand for AI-driv-
en intelligent networks, ETSI has created the ENI 
work group [5]. ENI’s goal is to improve the oper-
ator’s experience and add value to telco provided 
services, by assisting in decision making to deliver 
operational expenditure (OPEX) reduction and 
to enable 5G deployment with automation and 
intelligence. In particular, ENI aims to define an 
architecture that uses AI techniques and con-
text-aware, metadata-driven policies, to adjust ser-
vice configuration and control based on changes 
in user needs, environmental conditions, and busi-
ness goals, according to the “observe-orient-de-
cide-act” control loop model [5].

Network slicing for 5G can serve as a prime 
example to demonstrate ENI’s architecture and the 
operator’s benefits it provides, especially around 
VNF’s computational resource efficiency, while 
preserving the user requested SLA.

The telco industry’s evolution toward stan-
dardization of AI-assisted networks requires var-
ious industry consensus, including grammar and 
syntax for service policy and associated domain 
specific language (DSL), as well as data ingestion 
format, to foster the ability to interact with the 
broad variety of tools used for management and 
monitoring. A normalized format is required also 
to address the difficulty to harmonize the state 
of the divergent infrastructure, due to the use 
of silo specific tools, for example, per compute, 
network, and storage, and due to the variety 
of “assisted systems,” each with different capa-
bilities and different exposed API and varying 
degrees of ability to interact with the AI system, 
like ENI. It is therefore essential for ENI to define 
architecture components such as data ingestion 
and normalization, to provide a common base 
for ENI’s inter-modular interaction as well as for 
transforming the external assisted system (e.g., 
a 3GPP/5G implementation) inputs to a format 
that is understood by ENI.

To date, ENI has defined a modularized system 
architecture, as shown in Fig. 1a. Having a mod-
ularized system architecture facilitates the flexibil-
ity and generalization in the system design, and 
increases vendor neutrality. A brief description of 
each module, according to [5], is given below.

The Policy Management Module: Provides 
decisions to ensure that the operator’s goals and 
regulator’s policies are met. 

The Context Awareness Module: Describes 
the state and environment in which a set of the 
assisted system entities exists or has existed. For 
example, an operator may have a business rule 
that prevents 5G from a specific type of network 
slice in a given location.

The Situational Awareness Module: Enables 
ENI to understand how information, events, and 
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ed networks requires 
various industry 

consensus, including 
grammar and syntax 

for service policy and 
associated domain spe-
cific language (DSL), as 

well as data ingestion 
format, to foster the 

ability to interact with 
the broad variety of 

tools used for manage-
ment and monitoring.

This article has been accepted for inclusion in a future issue of this magazine. Content is final as presented, with the exception of pagination.



IEEE Wireless Communications • Accepted for Publication3

recommended commands that it may provide 
to the assisted system may impact its next state, 
actions, and ability to meet its operational goals.

The Cognition Management Module: Oper-
ates at the higher level and enables ENI as a whole 
to consult and meet its end to end goals.

The Knowledge Management: Used to repre-
sent information about ENI and the assisted sys-
tem, differentiating between known facts, axioms, 
and inferences.

The interaction and interoperability of ENI with 
an assisted system is determined by the latter’s 
support of the ENI Reference Points  [5]. Specif-
ically for the use of compute resources elastici-
ty and efficiency, as presented in this article, few 
elements, determined by relevant ENI Reference 
Points are needed. As depicted in Fig. 1b, the cur-
rent NFVI Information allows ENI to be aware of 
the computational resources’ capabilities (e.g., 
type of CPU, memory, data plane and accelera-
tors) and availability (status and utilization level), 
while in turn this enables ENI to influence and 
optimize placement decisions made by the VIM, 
while ensuring that 3GPP policies, resource allo-
cation and SLA are adhered too. Moreover, by 
using this information, ENI can further optimize 
resource utilization by:
•	 Enabling higher density for a given set of work-

loads under associated SLA.
•	 Anticipating and reacting to changing loads in 

different slices and assisting the VIM in avoiding 
resource conflicts.

•	 Timely triggering of up/down scaling or in/out 
scaling of associated resources.

Applying AI in Softwarized Mobile Networks: 
A Taxonomy View

Despite recent publications in the field [6], the full 
integration of AI in mobile network architecture 
is still in its early stages, and the design of learn-
ing algorithms that provide promising features 
such as network elasticity, as described earlier, 
is still a greenfield research topic. In this section, 
we describe learning techniques for applying and 
exploiting elasticity in the upcoming generations 
of mobile networks. Specifically, we propose a 
taxonomy on the learning characteristics required 
to provide elasticity, and three specific AI-based 
elasticity use cases, namely elastic RAN VNF 
design, slice-aware elastic resource management, 
and efficient slice setup.

We propose two different taxonomies for learn-
ing in the context of elasticity based on the data 
used for learning, and the network slice lifecycle 
phase. First, with respect to the data, learning 
techniques for elastic network slice management 
can be categorized along two main directions, as 
described below, independently of the actual algo-
rithm in place:

Inputs: Learning techniques shall learn features 
from the user demand to the network, the infra-
structure utilization and the slice policies. These 
inputs shall be conveniently measurable (and 
labeled in case of supervised techniques) in order 
to be applied in one of the outputs.

Outputs: Following the 3GPP definition [7], 
lifecycle management is composed of four stag-
es: preparation, instantiation, run-time and decom-
missioning. Hence, depending on the kind of 
algorithms, its target and the input features, the 
learning algorithm shall be employed in one of 
these phases.

The input direction can be further split along 
three dimensions, depending on the characteris-
tics of the learned input feature. In Fig. 2 we show 
this three-dimensional classification, highlighting its 
three main axes: the demand, the infrastructure, 
and the requirements. Triangles in Fig. 2 represent 
the granularity on each of the axes, being the dark-
er the finer.

Demand: Learning user behavior is paramount 
for enforcing elasticity in the network. As previous-
ly discussed, the multiplexing gains achieved by 
efficiently combining different slices on the same 
infrastructure necessarily requires learning of the 
user demand. That is, anticipatory resource re-or-
chestration builds on the understanding of the tem-
poral and spatial demands of services. This input 
data may have a coarse granularity (i.e., order of 
minutes) as the current orchestration technolo-
gies and the increased signaling overhead caused 
by numerous re-configurations prevent a too fast 
resource reassignment. This operational point is 
marked as D2 in Fig. 2. Nevertheless, demand 
may be learned at more granular levels (D1 in Fig. 
2) when designing elastic RAN NFs. In this case, 
learning metrics such as the user requests queu-
ing reports at faster time scale (i.e., sub-seconds) 
enables better decision making on the short-term 
future scheduling decisions according to the avail-
able computation capacity. 

Infrastructure: Learning how the underlying 
infrastructure reacts or limits elastic management/
orchestration decisions is fundamental. For exam-

FIGURE 1. The ETSI ENI Architecture and its interaction with the ETSI NFV 
MANO framework: a) ETSI ENI modularized system architecture; b) Man-
agement and orchestration Architecture.
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ple, elastic resource assignment algorithms need 
to learn about the computational behavior of NFs 
when subject to a certain load and to different 
requirements to provide a precise VNF location (I1 
in Fig. 2). Analogously, the wireless infrastructure 
(i.e., the channel) is probably the main driver for 
the elastic behavior of RAN functions, as it is the 
most important limiting factor. 

Requirements: A very important challenge for 
future sliced 5G networks is the service creation 
time. ML can greatly enhance the service setup by 
automatically translating consumer-facing service 
descriptions into resource-facing service descrip-
tions that can be processed by the network man-
agement and orchestration functionality in order to 
allocate the proper resources to the new service. 
AI tools can thus replace human interventions, 
which increase costs and are time consuming, to 
identify the resource requirements of a new service 
from the slice down to the VM/container levels. 
Furthermore, this approach can smartly take into 
account existing services with similar requirements 
to favor resource multiplexing across services and 
increase the system efficiency.

On the output dimension, the proposed taxon-
omy refers to the network slice lifecycle phases, as 
various approaches can be adopted and applied 
in all the phases of the lifecycle of a slice instance 
[7]. For example, slice behavior analysis can be a 
critical asset for elasticity provisioning in the slice 
preparation phase, since statistics can be exploited 
to efficiently decide the basic configurations and 
set the network environment.

In this article, we provide insights and use cases 
on AI-based elasticity mechanisms that are applied 
in the instantiation and run-time phases, but the 
preparation and decommissioning phases could 
similarly benefit from AI.

Instantiation Phase: The pool of parameters 
that feed the learning process of AI-based elastic 
mechanisms in this phase may be:
•	 Requirements depicted in SLAs and service 

demands.
•	 Past measurement and statistics related to 

resource consumption profiles of VNFs.
•	 Real time measurements from already instantiat-

ed slices.
•	 The current state of computational and resource 

consumption in the system. 
Based on these factors, the AI mechanism 

decides the admission of new slices and potentially 
the re-configuration of the running slices in the net-
work. Here, we focus on slice setup mechanisms 
based on AI that guarantee flexible slice admission 
control and deep network slice blueprint or tem-
plate analysis. Later we propose a learning approach 
for network slice admission control, which precisely 
takes place in the instantiation phase.

Run-Time Phase: For the AI-based elasticity 
mechanisms that are applied in the slice run-time 
phase, all the parameters that are available in the 
instantiation phase can be exploited. However, the 
learning capability is much more challenging since 
traffic load measurements are available, while the 
adaptation should be done in a faster scale, includ-
ing re-configurations at the VNF or slice level. Here, 
we focus on advanced sharing of computation 
resources among VNFs of multiple slices to provide 
resource elasticity, while the involved slices are in 
operation. Such an approach is presented below. 

Furthermore, the challenge of enabling VNF self-ad-
aptation during the run-time phase is handled.

Challenges
The above taxonomy is useful to understand 
where AI can help in the management and 
orchestration of networks. However, the selec-
tion of the right AI-based algorithm is not nec-
essarily a trivial task. Clearly, the features of the 
learned parameters described in this taxono-
my do have an impact on the type of learning 
algorithm that is employed. For example, highly 
dynamic parameters such as load may require 
algorithms with fast and adaptive online learn-
ing capabilities; yet other parameters such as the 
slice blueprint given the service requirements are 
more static and offline training could suffice for 
an artificially intelligent system to make the right 
decisions. Hence, although the fast-evolving field 
of AI makes difficult an a-priori selection of cer-
tain types of learning algorithms (e.g., deep neural 
networks, reinforcement learning, and so on) for 
specific types of parameters, it becomes apparent 
that a correlation between those does exist, and 
the design of the learning system and algorithms 
must carefully take into consideration such a cor-
relation. In addition, labeled (and reliable) data 
sets to implement supervised learning algorithms 
in many cases are only (partially) available, since 
5G deployment is not started yet. Furthermore, 
these AI algorithms may deliver but a sliver of the 
more comprehensive and ambitious goals of cog-
nitive network management systems where archi-
tectural support is also required. An analysis of 
such architecture requirements is, however, out of 
the scope of this article, but the interested reader 
is referred to [8], where extensive architectural 
impact analysis has been performed.

Use Cases
Next, we describe three possible use cases for 
the application of AI algorithms that target net-
work elasticity by applying cognitive techniques 
on different inputs and in different phases of the 
lifecycle.

Computationally Elastic Scheduler
As discussed earlier, computational elasticity deals 
with the performance optimization of a NF given 
additional constraints on the available computa-
tional capacity assigned to such a function by an 

FIGURE 2. Learning taxonomy axes for slice lifecy-
cle management.
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orchestrator. While this approach can be applied 
to any kind of NF, those that imply higher com-
putational loads can benefit more. As consistently 
shown in the literature, the most expensive NFs 
in terms of computational demand are the ones 
related to the MAC, encoding and decoding [9]. 
In a previous work [10], we proposed an algo-
rithm for uplink MAC scheduling that offers grace-
ful degradation in case of a sudden load variation 
that could not be served with the available com-
putational resources (i.e., a flash crowd).

The algorithm in [10] showed indeed the poten-
tial of such an approach. However, it relies on 
strong assumptions on both the channel conditions 
and the user demand. As already discussed, such 
metrics shall be considered as part of a learning 
process. In the following, we propose a possible 
approach to an AI-based computational elasticity.

In nuce, achieving computational elasticity at 
the MAC level implies a joint optimization of Mod-
ulation and Coding Scheme (MCS) selection for 
each user (as discussed in [11], different MCS have 
different computational complexity depending on 
the SNR margin), and the actual user scheduling. 
That is, rather than only selecting who to schedule, 
the elastic MAC controller shall also select the best 
MCS to be used given the constraints on the avail-
able computational capacity.

Thus, selecting the best scheduling decision at 
each time transmission interval (TTI) entails learning 
characteristics such as the traffic demand and the 
channel conditions. However, given the trend of 
centralizing access NFs, it is likely that an elastic 
MAC scheduler will need to take scheduling deci-
sion for thousands of devices at the same time. 
Therefore, the scalability of the learning process 
is of paramount importance for its practical imple-
mentation. A promising learning solution for solv-
ing this problem is that of contextual bandits [12]. 
Contextual bandits employ the concept of policy 
selection, as opposed to action selection in clas-
sical bandit problems. A policy essentially maps 
context information (encoded as a sample from 
a potentially rich feature space) into a scheduling 
action. By learning the history of policy-context-re-
ward tuples, randomized greedy algorithms can be 
built to maximize the total reward for any upcom-
ing context, which in this case includes the user 
data queues and the buffer state of the computing 
processor.

A necessary input for contextual bandits is, as 
discussed previously, the prediction of the infra-
structure status for a given time frame. In mobile 
networks, forecasting the SNR quality of a given 
user is, thus, fundamental to take the scheduling 
decisions as described above. We thus explored 
the feasibility of a SNR prediction algorithm 

(results are depicted in Fig. 3). The objective was 
to obtain a short scale (5 ms) forecast of the SNR 
values, taking into account a window of the past 
40 ms samples. For this purpose we employ a 
layer of a Long Short Term Memory (LSTM) net-
work, activated with a Scaled Exponential Linear 
Unit (SELU) function and a Mean Absolute Error 
(MAE) loss function (Fig. 3a). As shown in Fig. 3b, 
this network is capable of forecasting a real world 
SNR trace collected in a lab environment, demon-
strating the effectiveness of a learning scheduling 
framework.

Slice-Aware Resource Management
The design and setup of a network slice capable 
of accurately satisfying the need of mobile ser-
vices with very diverse requirements is an import-
ant challenge for 5G networks. This process can 
be optimized by enabling the 3GPP Network Slice 
Management Function (NSMF) and Network Slice 
Subnet Management Functions (NSSMF) to use 
AI mechanisms capable of automatically trans-
lating service requirements to network require-
ments. To this aim, 3GPP recently introduced the 
Management Data Analytics Service (MDAF) in 
the orchestration architecture [13].

The goal in slice-aware elastic resource man-
agement is to develop algorithms, which consider 
the Quality of Service (QoS) requirements, SLAs, 
and demands of network slices operating on the 
same physical infrastructure to optimally allocate/
de-allocate a portion of available resources to each 
of them. The two main design challenges are mod-
eling of the essential parameters, and adapting the 
models to changes in the run-time. This information 
is extremely useful for resource allocation and pro-
visioning at every level of the network. In a scenar-
io where a limited number of RAN radio resources 
have to be shared among multiple slices with sig-
nificantly different requirements, different RAN 
parameter set configurations are needed. These 
may vary in spatial domain due to changing radio 
conditions as users are moving, and in temporal 
domain depending on the traffic load distribution 
over time.

The VNFs computational performance is high-
ly dependent on the implementation techniques 
as well as channel quality. In [14], a profiling 
procedure has been proposed; it uses AI-based 
regression (i.e., Lasso regression), to generate a 
mathematical model. On the same research path, 
AI-based solutions (Lasso, Support Vector Machine 
(SVM), or reinforcement learning) can learn (or 
adapt) the computational performance of VNFs 
based on the reported input parameters and the 
measured processing times for any new VNFs.

The channel quality between the antennas 
and the mobile terminals is the foundation to 
estimate the total network throughput and allo-
cate the available radio resources to each slice 
as well as the required computational resources. 
In both cases, AI-based approaches can either 
provide or adapt the channel models based on 
the monitoring reports to be used in estimations 
and provisioning of slice-aware resource man-
agement algorithms.

AI techniques could also be used for traffic pre-
diction, which can be a valuable input for many 
elastic resource allocation algorithms. The resource 
management algorithms either act in passive mode 

FIGURE 3. A framework for SNR prediction: a) NN architecture; b) SNR pre-
diction.
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(i.e., observing the demand and react to it) or 
always assume the maximum demand. The pre-
diction of slice demands can enhance inter-slice 
resource utilization. Figure 4a presents the deep 
neural network architecture with two dense lay-
ers with ReLU activation function and a sigmoid 
activation function. It is used to predict the traf-
fic demands of two network slices with different 
behaviors, and Fig. 4b shows the predicted against 
the actual traffic. Virtual resource management 
models, consequently, can now also consider pre-
dicted slice demands to adapt the service provi-
sioning; for example, some services may have a 
repetitive pattern or may only be active during cer-
tain times of the day or year.

The movement of traffic concentration around 
the network could also be predicted, for example, 
groups of users could be identified that move in a 
coordinated fashion through the network and fol-
lowing a certain trajectory. Such input may be very 
useful for adjusting the beam patterns of groups 
of cells proactively. Dynamic beam pattern adjust-
ment would shift the load distribution between 
cells and ensure that all users are best served at 
the same time. Knowing in advance the traffic char-
acteristics of each slice and its evolution over time 
and space is essential to reaching the correct beam 
forming for each cell and aligning across neigh-
bors in order to create stable coverage in a timely 
manner. This is clearly valuable for latency sensitive 
services/slices or throughput-hungry ones.

Efficient Slice Setup
We envision an important role of AI algorithms 
during the run-time phase of a network slice. 
However, unsupervised learning algorithms are 
fundamental also in the instantiation phase, where 
they shall analyze the generated requirements 
and identify whether a slice already instantiated 
can efficiently support the new service or an addi-
tional slice needs to be deployed. This approach 
not only further reduces the service creation time 
by avoiding the instantiation of a new slice for 
each new service, but also enhances the system 
efficiency by increasing the resources shared 
across elastic slices. To be effective, this approach 
has to operate on slices that do not need fully 
dedicated resources, for example, they are elastic 
in the sense that they have relaxed constraints 
in terms of resource isolation. In contrast, slic-
es characterized by stringent resource isolation 
constraints are non-elastic and may not accept to 
share their resources with concurrent slices and 
limit the system flexibility.

A practical example is the case of different 
broadcasters covering the same sporting event: 
3GPP’s NSMF may mutualize the radio resourc-
es allocated to the different services to transmit 
common content, and use dedicated resources for 
slice-specific content such as the speaker’s voice. 
More specifically, most mobile services are typi-
cally characterized by a set of dedicated NFs in 
charge of guaranteeing its specific requirements 
(e.g., multi-connectivity for high reliability) and a 
larger set of shared NFs that deal with more gener-
ic requirements (e.g., the handover function that 
guarantees coverage).

An AI-based mechanism can classify in an unsu-
pervised manner the instantiated slices with respect 
to the NFs shared with the new request, and then 

assign the new slice request to the deployed 
slice based on the number of shared NFs. In this 
way, the additional resources needed to fulfill the 
requirements of the new slice can be reduced and 
the slice deployment process accelerated. This 
approach can also be used as a congestion control 
mechanism to prevent resource outages: when the 
system is close to saturation, the NSMF can re-clus-
ter the overall set of services in new network slice 
instances to maximize the resource sharing. The 
latter could be implemented by using a spectral 
clustering scheme [15], where the deployed slices 
are represented as nodes of a connected graph 
and clusters are found by partitioning this graph 
based on the nodes’ affinity (e.g., related to the 
number of shared NFs). Figure 5 shows the varia-
tion of the slice request dropping probability as a 
function of the non-elastic slice arrival probability. 
In this result, slices are classified between elastic 
and non-elastic and we assume that non-elastic 
slices lead to high revenues as they require dedi-
cated network resources. We evaluate the perfor-
mance of three different approaches. In the first 
approach, resource sharing is not implemented, 
which results in higher resource requirements and 
larger slice dropping probability. In the second 
case, we assume that resource sharing is enabled 
by assigning a new slice request to the already 
instantiated slice maximizing the number of com-
mon VNFs (i.e., max VNF). Finally, in the third case, 
spectral clustering is implemented at each slice 
request arrival/departure to maximize the resource 
sharing in the system. Spectral clustering shows 
the best performance since it continuously opti-
mizes the shared resources at the cost of higher 
complexity. The results in Fig. 5 show that both 
mechanisms enabling resource sharing improve 
the performance for both elastic and non-elas-
tic slices; however, the slice dropping probability 
reduction obtained when using the simple max 
VNF approach is limited (around 11 percent). In 

FIGURE 4. Traffic demand prediction using deep neural network.
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contrast, the spectral clustering approach leads to 
50 percent reduction of the slice dropping prob-
ability, therefore enabling a large improvement in 
terms of potential income for the operator.

Conclusions
In this article, we have introduced the novel idea 
of utilizing AI techniques with the purpose of 
exploiting the resource elasticity of a 5G network, 
hence improving resource efficiency and the over-
all performance of its management and orchestra-
tion machinery. Using as a basis the architectural 
work recently developed by ETSI ENI and the con-
cept of resource elasticity, we propose a taxon-
omy for elastic slice lifecycle management and 
three different use cases showing the applicability 
of AI on different management and orchestration 
problems where elasticity can be exploited. The 
article constitutes the basis of a recently approved 
use case at ETSI ENI.
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