
Overbooking Network Slices through
Yield-driven End-to-End Orchestration

Josep Xavier Salvat
1 2
, Lanfranco Zanzi

1 2
,

Andres Garcia-Saavedra
1
, Vincenzo Sciancalepore

1
, Xavier Costa-Perez

1

1
NEC Laboratories Europe, Heidelberg, Germany

2
Technische Universität Kaiserslautern, Germany

ABSTRACT
Network slicing allows mobile operators to offer, via proper ab-

stractions, mobile infrastructure (radio, networking, computing) to

vertical sectors traditionally alien to the telco industry (e.g., auto-

motive, health, construction). Owning to similar business nature, in

this paper we adopt yield management models successful in other

sectors (e.g. airlines, hotels, etc.) and so we explore the concept of

slice overbooking to maximize the revenue of mobile operators.

The main contribution of this paper is threefold. First, we de-

sign a hierarchical control plane to manage the orchestration of

slices end-to-end, including radio access, transport network, and

distributed computing infrastructure. Second, we cast the orches-

tration problem as a stochastic yield management problem and

propose two algorithms to solve it: an optimal Benders decompo-

sition method and a suboptimal heuristic that expedites solutions.

Third, we implement an experimental proof-of-concept and assess

our approach both experimentally and via simulations with topolo-

gies from three real operators and a wide set of realistic scenarios.

Our performance evaluation shows that slice overbooking can

provide up to 3x revenue gains in realistic scenarios with minimal

footprint on service-level agreements (SLAs).

CCS CONCEPTS
• Networks→ Mobile networks; Network algorithms;

KEYWORDS
5G; Network slicing; Orchestration; Yield management

ACM Reference Format:
Josep Xavier Salvat

1 2
, Lanfranco Zanzi

1 2
, Andres Garcia-Saavedra

1
, Vin-

cenzo Sciancalepore
1
, Xavier Costa-Perez

1
. 2018. Overbooking Network

Slices through Yield-driven End-to-End Orchestration. In The 14th Inter-

national Conference on emerging Networking EXperiments and Technologies

(CoNEXT ’18), December 4–7, 2018, Heraklion, Greece. ACM, New York, NY,

USA, 13 pages. https://doi.org/10.1145/3281411.3281435

1 INTRODUCTION
The hype around software-defined networking (SDN) and net-

work function virtualization (NFV) is the projection of a trend

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CoNEXT ’18, December 4–7, 2018, Heraklion, Greece

© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6080-7/18/12. . . $15.00

https://doi.org/10.1145/3281411.3281435

towards network softwarization and programmability that is blend-

ing together telecommunication and computing industries. This

combination has a deep impact on mobile communications infras-

tructure that is yielding a transformation from relatively complex

monolithic architectures into a flurry of commoditized networking,

computing and radio resources [7, 20].

Clearly, the need of mobile operators to augment their revenue

is a strong pull towards said convergence, spawning uncharted

sources of monetization as a result. Namely, the availability of

cloudified networking, computing, and radio resource pools can

now be offered, via proper abstractions, to vertical sectors (e.g.,

automotive, health, construction)—traditionally alien to the telco

sector—as ameans to enable new services such as remote-controlled

machinery, augmented/virtual reality (AR/VR), etc. [11, 48]. An

example of this symbiosis is the momentum that multi-access edge

computing (MEC) is gaining to provide services near the edge, a

unique commodity that only mobile operators can offer.

In this context, Network Slicing appears as a key solution to

accommodate these emerging business opportunities in next gen-

erations of mobile systems [19]. The Next Generation Mobile Net-

works (NGMN) Alliance defines a network slice as “a set of network

functions, and resources to run these network functions, forming a

complete instantiated logical network to meet certain network char-

acteristics required by the service instance(s)” (c.f. [35]). Inspired by

recent advances on SDN and NFV, this concept shall provide the

required tools to allocate (virtual) resources to 3
rd
-parties in an

isolated, flexible and guaranteed manner. It thus becomes evident

that the orchestration of resources end-to-end
1
is, albeit challeng-

ing, a requirement in order to provision network slices with (i)
spectrum at radio sites, (ii) transport services in the backhaul and

(iii) computing/storage at distributed computing clouds.

Nevertheless, its benefits are compelling. Network Slicing leads

mobile operators towards business models that, perhaps surpris-

ingly, have a similar nature to successful yield management strate-

gies popular in areas such as airline or hotel industries, and promise

substantial gains in the revenue attained to mobile investments.

In particular, in this paper we explore the concept of slice over-

booking, accommodating the common practice in airline services

of intentionally allocating more cargo than available capacity to

the allocation of mobile network slices for 3
rd
-party services.

The challenge to adopt an orchestration system based upon the

concept of slice overbooking is threefold: (i) when doing overbook-

ing, resource deficit (and thus violations of system-level agree-

ments) may occur; and so, in order to maintain the incentives for

1
With end-to-end, we refer to all domains of the mobile network ecosystem, including

network/storage/computing/radio resources. Domains beyond the ownership of a

mobile operator, e.g., Internet Service Providers (ISPs), are not considered.

https://doi.org/10.1145/3281411.3281435
https://doi.org/10.1145/3281411.3281435

CoNEXT ’18, December 4–7, 2018, Heraklion, Greece J. X. Salvat, L. Zanzi, A. Garcia-Saavedra, V. Sciancalepore, X. Costa-Perez

3
rd
-parties (users) to join the system, a balance between overbook-

ing and potential service disruption must be taken care of; (ii) we
need to untangle the coupling between resource reservation and

slice admission control decisions, which is further compounded

by the heterogeneous nature of the resources required to build a

slice across the whole system; (iii) we need to make an appropriate

use of monitoring information to be able to adapt to behavioral

dynamics of 3
rd
-party services embedded in network slices.

The main contributions of our paper are:

• We design an end-to-end (E2E) orchestration platform for

mobile systems based on a hierarchical control plane that

exploits feedback information from network slices to make

orchestration decisions;

• We formalize our orchestration problem as a yield manage-

ment problem that jointly performs admission control and

resource reservation across all domains of the mobile system

exploiting the concept of slice overbooking. We derive two

algorithms: an optimal approach based on Benders decompo-

sition and a sub-optimal heuristic that expedites decisions;

• We build an experimental proof-of-concept with conven-

tional mobile equipment and assess the performance of our

system via experiments and simulations with large urban

topologies from three real operators in Europe.

The remainder of this paper goes as follows. §2 presents our

system design including control and data planes, implementation

details and a mathematical model of our system. Our orchestration

problem is formalized as a yield management problem in §3. Then,

§4 introduces two algorithms: an exact solver based on Benders

decomposition a light heuristic for larger-scale systems, and a set

of simulation results to assess their performance in urban networks

from 3 real operators. §5 introduces our experimental prototype

and a set of experiments in a controlled testbed comprised of con-

ventional mobile equipment for validation. Finally, §6 discusses

related literature and §7 presents our concluding remarks.

2 SYSTEM DESIGN AND MODEL
We now introduce the design of our system and a mathematical

model that allows us to make orchestration decision. Our system

has decoupled control and data planes. The data plane is comprised

of base stations, switches and computing infrastructure. In the con-

trol plane, we have a hierarchical architecture where local domain

controllers are governed by an end-to-end (E2E) orchestrator.

2.1 Data Plane
As depicted in Fig. 1, we consider a system with a radio access

network (RAN) comprised of B := {1, . . . ,B} base stations (BS), a
distributed computing fabric with C := {1, . . . ,C} computing units

(CUs), and a transport network connecting BSs and CUs that we

model as an undirected graph where the edges, collected in set E,

are network links.

2.1.1 Service model. We allow tenants to deploy their services,

dubbed vertical services (VSs), within a slice of the system. Such

VSs are provided by the tenant in an offline on-boarding phase,

e.g., as virtual machines (VMs). The first task to create a slice is to

construct a network service (NS) with sufficient computing resources

Base Stations

Edge

Cloud Unit

VIM

Edge Controller

(HEAT)

VSs

Core Cloud Unit

VIM (Openstack)

Cloud Controller

(HEAT)

vEPCs

VSs

Middle-

boxes

Vertical Service

VNFs

ETSI Network Service (NS)

EPCs

VNFs

Middleboxes

VNFs

Switch

VNFsPNFs

Transport

Network
RAN

PNFs

Figure 1: Data plane

allocated to the VS (and related mobile functions), connectivity

in the transport network, and spectrum resources at radio sites

to enable VS access to the tenant’s users. To this aim, we model

such network service as an ETSI NFV NS [29], with a chain of

physical network functions (PNFs, e.g., slices of BSs and switches),

the vertical service (VS) and all virtual network functions (VNFs)

that connect end-users and VS (e.g., GTP gateways, MME, etc.).

This is shown in Fig. 1.

2.1.2 Resources. We assume BSs with RAN sharing or slicing

support (e.g. [13]), an SDN-based transport network and OpenStack

as compute infrastructure manager (although other cloud managers

can be accommodated). BSs, network links and CUs are character-

ized by a capacity valueCb ,Ce andCc ∈ R+ indicating, respectively,
the maximum amount of radio resources (spectrum chunks), trans-

port network resources (bits per second) and computing resources

(shares of aggregated CPU pools)
2
that can be allocated to a service

in BSb ∈ B, network link e ∈ E and CU c ∈ C. To keep our problem
tractable, we assume that the microscopic problem of selecting a

server for a VNF within a CU is handled locally by a cloud orchestra-

tor (e.g., Heat),
3
and focus in this paper on the macroscopic problem

of jointly optimizing (i) slice access control, (ii) CU selection, and

(iii) reservation of resources across the system for the NS. Now,

we let pb,c = ⟨e1, e2, · · · ⟩ be a sequence of links ei ∈ E connecting

BS b and a CU c (i.e., a path) and Pb,c be a set with all possible

available paths pb,c . This can be readily computed offline using,

e.g., k-shortest path methods based on Dijkstra’s algorithm. Each

path p ∈ Pb,c is further characterized with a delay Dp .

2.1.3 Middleboxes. We rely on an overbooking mechanism that

adapts the reservation of resources to the actual demand of each

slice (or a prediction of it) as explained later on. However, we may

violate service-level agreements (SLAs) when making overly op-

timistic predictions (slice overbooking). In these cases (which we

strive to minimize), it is important to avoid perturbations of the

transmitter’s behavior. If we simply delayed or dropped packets,

TCP’s transmission control of end-users would react in an undesir-

able manner. Hence, we need a scheme to under-provision resources

that is also transparent to the tenant’s users.

2
To avoid notation clutter, we focus on compute resources only; however our model

can be readily extended to consider others such as storage.

3
We refer the reader for more details on the microscopic issue to [6].

Overbooking Network Slices through Yield-driven End-to-End Orchestration CoNEXT ’18, December 4–7, 2018, Heraklion, Greece

End to End Orchestrator (OVNES)

Core Cloud
Units

Transport Controller
(FloodLight)

RAN Controller
Cloud Controller

(HEAT)

RAN
Edge Cloud

Units

Slice Manager

WEB Interface

Slice RequestSlice RequestSlice Requests

AC-RR Monitoring

Transport
Network

Or-COr-R

Or-T

SMan-Or

Forecasting

Figure 2: Control plane

TCP proxies are nowadays common in many service gateways

and load balancers in operational networks to improve through-

put performance, enhance security, perform network analysis and

traffic control [27, 30]. In our system, we exploit basic TCP proxy

functionality in amiddlebox as depicted in Fig. 1. Our proxy creates

a TCP overlay network splitting each connection into two as per

Split TCP [28]: the former between the service of the slice and

the middlebox, and the latter between the middlebox and the end-

user(s) of the slice where we do rate control. If the slice’s (aggregate)

load exceeds the SLA, packets are randomly dropped to adjust the

rate to the SLA. If the load is within the SLA parameters and below

the maximum network capacity reserved for the slice (as detailed

later), the middlebox simply forwards packets transparently. Finally,

if the load is within the SLA parameters but it exceeds the network

capacity reserved for the slice, the middlebox buffers packets to

adjust the rate to the reserved capacity. Buffered packets are imme-

diately acknowledged back to the service and then transmitted to

the final user upon capacity availability. This avoids that the rate

controller of the transmitter’s TCP implementation reacts to our

traffic control actions when the load is within the tenant’s SLA.

2.2 Control Plane
Our control plane is depicted in Fig. 2. At the top of the hierarchy,

a slice manager interacts with the tenants and oversees the setup of

a NS for the slice. In the middle, the end-to-end orchestrator embeds

most of our system’s intelligence and is in charge of performing

access control and resources reservation activities for the slices

all across the mobile system, and interacts with domain controllers

(RAN, transport, cloud) to deploy the NS, accordingly.

2.2.1 Slice Manager. We consider a time slotted systemwhereby

time is divided into decision epochs ⟨1, 2, . . . ⟩. Tenants issue slice re-

quests to the slice manager at any time within one decision epoch.
4

We then let T (t) be the set of tenants requesting a slice in epoch t .
Each slice request is characterized by Φτ := {sτ ,∆τ ,Λτ ,Lτ }.

sτ is a function that maps the network load received by tenant

τ ’s VS into computing requirements (details later). ∆τ describes

the latency tolerance between τ ’s service and any BS, and Λτ ={
Λτ ,p | ∀p ∈ Pb,c ,b ∈ B, c ∈ C,Λτ ,p ∈ R+

}
captures the service

bitrate requested for τ ’s service at each radio site. Finally, Lτ is the

4
We assume it as an adjustable parameter, e.g., based on (off-)peak hours [31, 32] that

may trade off the forecast accuracy and speed of reaction.

duration of the slice. Should the slice be accepted, Φτ becomes an

SLA between the tenant and the operator during Lτ intervals.

From the implementation perspective, we build our slice man-

ager as a web app where tenants can introduce their Φτ requests.

Internally, we use TOSCA templates to model NSs as shown in Fig. 1,

and send it down to the E2E orchestrator using a REST interface.

2.2.2 E2E Orchestrator. This is the main building block of our

system. On the one hand, it processes monitoring data provided

by each controller and provides data aggregation functions and

forecasting algorithms. On the other hand, it makes judicious deci-

sions regarding resource reservation and admission control, and

interacts with the different controllers in order to enforce such

decisions. From a software perspective, and to prove our concept,

we develop our own orchestrator in Java.5 This is the only entity

that maintains system state information. All the remaining entities

(i.e., slice manager, controllers) are stateless in order to guarantee

consistency. As shown in Fig. 2, the main functional sub-blocks

(connected by means of a REST interface) are the following:

AdmissionControl andResourceReservation (AC-RR).At
the beginning of each decision epoch t the AC-RR engine has to

(i) decide which slices are accepted among those requests arrived

during the previous decision interval, (ii) select a CU to instantiate

the VNFs/VS of each NS, and (iii) make radio/transport/compute

resource reservations across the system (i.e., make an infrastructure

slice) in order to maximize the net revenue obtained from the tenants.

To this aim, we let x
(t)
τ ,p denote whether tenant τ is granted access

to path p (x
(t)
τ ,p = 1) or not (x

(t)
τ ,p = 0); if slice Φτ is rejected, then∑

p x
(t)
τ ,p = 0. Let us also define z

(t)
τ ,p as the resource reservation for

tenant τ , in terms of bitrate, when using path p, as illustrated in

Fig. 3 (top). Importantly, z
(t)
τ ,p is not necessarily the amount of trans-

port resources reserved in path p (there are transport overheads we

need to account for), but the bitrate associated to the service when

using this path. Based on z
(t)
τ ,p , however, we derive the reservations

of radio, transport and compute resources for slice Φτ . For notation

convenience, we vectorize x
(t)
τ ,p and z

(t)
τ ,p into x (t) ∈ {0, 1}S

(t)
and

z(t) ∈ RS
(t)

+ , where S(t) :=
∑
b ∈B

∑
c ∈C

∑
p∈Pb,c |T

(t) |.

In order to make decisions, we formalize our problem as a yield

management problem (§3) and devise two algorithms to solve it (§4).

As a result, the TOSCA NS descriptors are modified accordingly and

passed down to the different domain controllers through a REST
interface that follows closely the ETSI GS NFV-IFA 005 specification.

Monitoring and Feedback. We further divide the time win-

dow between two decision epochs into κ(t) := ⟨1, 2, . . . ⟩ monitor-

ing samples. As depicted in Fig. 3 (bottom), the monitoring func-

tion collects VS network load samples in sequences ⟨λ
(θ)
τ ,p | θ ∈

κ(t)⟩ for every epoch t . With a slight abuse of notation, we let

λ
(t)
τ ,p = max

{
λ
(θ)
τ ,p | θ ∈ κ

(t)
}
denote the maximum demand of re-

sources during epoch t . This value can be computed for past epochs

{1, . . . , t − 1} but it is unknown in the current one. Note that we

5
We acknowledge the fact that there exists a plethora of software projects developing

NFV orchestration tools (Tacker, OSM, Cloudify, etc.). We advertise that none of the

tools accommodate our needs in full and thus we develop our own for the purpose

of this paper. As future work, we aim to integrate our concept within a mainstream

orchestration platform.

CoNEXT ’18, December 4–7, 2018, Heraklion, Greece J. X. Salvat, L. Zanzi, A. Garcia-Saavedra, V. Sciancalepore, X. Costa-Perez

Decision Intervals

R
es

o
ur

ce
s

Resource
reserved:

Multiplexing
gain

Resource
usage:

Resource
request:

Resource
reserved: z τ , p

(t)

Multiplexing
gain

Monitoring samples

R
e

so
ur

ce
s

Resource
usage:λ τ

(κ)

Potencial
penalty

t

λ τ
(κ)

z τ , p
(t)

Resource
request: Λ τ , p

Figure 3: Resource dynamics and resource (under-)provisioning.

use max to account for peak aggregate loads that will allow us to

minimize our under-allocation footprint. Therefore, we let
ˆλ
(t)
τ ,p de-

note the estimated (predicted) value for epoch t , and 0 < σ̂
(t)
τ ,p ≤ 1

denote the level of uncertainty of such prediction. This is performed

by the Forecasting sub-block, explained below.

In addition to service demand, another source of uncertainty is

the wireless channel capacity. To model this, we let η
(t)
τ ,b be a factor

that maps radio spectrum (physical resource blocks (PRBs)) into

actual load injected into the transport network (bits per second)

for tenant τ and BS b at epoch t . Note that η
(t)
τ ,b depends mostly

on the average signal quality between users and BS, which can

be monitored with conventional utilities and then estimated using

standard radio models.

From our implementation perspective, we use sFlow to collect

service load samples, OpenStack Ceilometer/Gnocchi to collect

computing/storage monitoring data, and a proprietary protocol to

gather signal quality samples from the RAN. Finally, we exploit

InfluxDB to store time-series data and a MySQL database to save

additional control plane information, e.g., current state of each slice.

Forecasting. This block processes the measurements (observa-

tions) performed during previous decision epochs t and provides

the forecasting information to drive the system towards optimal

states. In particular, we focus on a specific class of machine-learning

algorithms that learn and predict the future traffic behaviors
ˆλ
(δ)
τ ,p

for the next N decision intervals, i.e., δ ∈ {t + 1, . . . , t + N }. Expo-
nential smoothing methods are common to properly handle future

resource provisioning in cloud computing environments. However,

the main drawback of (double) exponential smoothing is the inabil-

ity to account for seasonabilities. Hence, our forecasting algorithm

is based on a three-smoothing function.
6
This accurately applies

to our problem as mobile data has periodicity features [36] that

can be exploited to provide predicted traffic levels with a certain

accuracy σ̂
(δ)
τ ,p . Therefore, we rely on the multiplicative version of

Holt-winters (HW) algorithm [43], where the forecasting function

fHW is defined as fHW : R |t−1 | → R |t+δ | | λτ ,p → λ̂τ ,p.

6
Naturally, we can seamlessly plug in alternative forecasting methods, e.g., recent

approaches based on neural networks [50].

2.2.3 Controllers. As depicted in Fig. 2, our orchestrator inter-

acts with domain controllers to enforce orchestration decisions

and to retrieve monitoring information. At the northbound of

the Cloud controller, we translate the received TOSCA descriptor

into a Heat template and send it down to a driver that interfaces

with OpenStack Heat and Keystone for proper instantiation and

CPU reservation (using CPU pinning [24]). Similarly, at the north-

bound of the Transport controller we translate the TOSCA descrip-
tor into a series of OpenFlow instructions that are processed with

Floodlight SDN controller to set up paths between BSs and CUs

with appropriate capacity. Finally, we use the same descriptor file

to configure radio shares of commercial LTE base stations, wherein

each slice is connected to a different mobile core.

3 ADMISSION CONTROL & RESOURCE
RESERVATION (AC-RR) PROBLEM

Maximization of a business’ revenue falls into the category of

yield management, a mainstream business theory that studies fare

management, access control and resource allocation [42]. In the air-

line industry, the problem is to decide, based on the number of seat

reservations, whether to accept or reject new requests considering

that passengers may cancel, or even be “no-shows”, prior to the

flight departure. Thus, overbooking is performed with associated

penalties determined by a penalty-cost function. Owning to simi-

lar business nature, we cast our slice orchestration problem into a

stochastic yield management optimization problem.

3.1 Design of the objective function
Analogously to the airline example, we exploit the fact that users

rarely consumes all the resources they request [22]. This gives us

the opportunity to allocate more tenants than those presumably

allowed by the leftover capacity, and gain additional revenue from

slice multiplexing (overbooking). Clearly, an overly aggressive strat-

egy may lead to resource deficit, discouraging potential users to

join the system. We address this by (i) considering (forecasted)

peak loads at each interval and (ii) designing a proper penalty-cost

function. Consequently, we define

ψ (t) :=
∑

τ ∈T(t)

∑
p∈Pb,c

∀b ∈B,c ∈C

Expected penalty︷ ︸︸ ︷
Kτ Pr

[
z
(t)
τ ,p < λ

(t)
τ ,p

]
x
(t)
τ ,p −

Reward︷ ︸︸ ︷
Rτ x

(t)
τ ,p

as the expected instantaneous cost in epoch t , and define

min

x ∈{0,1}S,z ∈RS+

lim

T→∞

1

T

T∑
t=1

ψ (t) (1)

as our optimization problem, where Rτ is the reward obtained from

accepting slice Φτ (e.g., subscription fee) and Kτ is a penalty paid

to tenant τ when we violate its SLA,
7
which happens with prob-

ability Pr

[
z
(t)
τ ,p < λ

(t)
τ ,p

]
. The target is to asymptotically minimize

the aggregate cost or, equivalently, maximize the net reward.

7
These coefficientsKτ andRτ shall be designed to balance user incentives and revenue.

We refer the reader to related economy literature [33].

Overbooking Network Slices through Yield-driven End-to-End Orchestration CoNEXT ’18, December 4–7, 2018, Heraklion, Greece

A possible approach to solve this problem is to model λτ ,p as

a random variable with known distribution, and estimate its pa-

rameters looking at the realizations. This falls into the realm of

stochastic programming where the aim is to balance reward maxi-

mization (right-hand side of Ψ(t)) with the cost of a recourse action

(left-hand side). However, in practice, λτ ,p may be characterized by

an intractable distribution and/or discretization may lead to overly

complex computation. Hence, we adopt a more practical approach.

First, we assume that the duration of a slice Lτ is relatively small

compared to the system’s time horizon. Therefore, solving Eq. (1)

is equivalent to minimizingψ (t) at each decision epoch. This also

allows us to drop the superscript (t) to simplify the notation and

mitigate clutter in our analysis.

Second, we substitute Pr

[
z
(t)
τ ,p < λ

(t)
τ ,p

]
with a risk cost function

ρ(zτ ,p , σ̂τ ,p ,Lτ) := Pτ ,p · ξτ ,p that depends on the resource reser-

vation zτ ,p , forecast uncertainty σ̂τ ,p and slice duration Lτ , where
the term

Pτ ,p :=
Λτ ,p − zτ ,p

Λτ ,p − ˆλτ ,p
, 0 ≤ Pτ ,p ≤ 1, 8

captures the risk of resource deficit due to overly aggressive under-

provisioning, and

ξτ ,p := σ̂τ ,pLτ , 0 < ξτ ,p ≤ Lτ ,

is a scaling factor that accounts for the uncertainty in our prediction

(σ̂τ ,p > 0) and the duration of the slice request (Lτ > 0). In this

way, we can rewrite our problem as:

min

x ∈{0,1}S,z ∈RS+

Ψ :=
∑
τ ∈T

∑
p∈Pb,c

∀b ∈B,c ∈C

Estimated penalty︷ ︸︸ ︷
Kτ ρ(zτ ,p , σ̂τ ,p ,Lτ)xτ ,p −

Reward︷ ︸︸ ︷
Rτ xτ ,p

We next introduce the constraints of our problem.

3.2 Constraints
We first formulate the system capacity constraints as∑

τ ∈T

∑
p∈Pb,c
∀b ∈B

aτ + zτ ,pbτ ≤ Cc , ∀c ∈ C (2)

∑
τ ∈T

∑
p∈Pb,c

∀b ∈B,c ∈C

zτ ,pηe1e ∈p ≤ Ce , ∀e ∈ E (3)

∑
τ ∈T

∑
p∈Pb,c
∀c ∈C

zτ ,pητ ,b ≤ Cb , ∀b ∈ B (4)

describing capacity constraints of CU resources, transport links,

and BSs, respectively. Parameters aτ ,bτ ∈ sτ in Eq. (2), characterize

the linear relationship between network load arriving at the service

of tenant τ and its computing requirements.
9 aτ models a baseline

consumption associated to, e.g., the VS operative system, the mean

number of users of the tenant, etc., and bτ models the amount of

computation required to serve the allocated bitrate. In Eq. (3), we

8
We later impose

ˆλτ ,p ≤ zτ ,p ≤ Λτ ,p , which yields 0 ≤ Pτ ,p ≤ 1.

9
This model is motivated by the strong linear correlation between network load and

storage/compute usage in network services evinced in several works, e.g. [16, 23], and

our own measurements. We assume the model parameters are learnt during an offline

on-boarding phase.

let ηe model the overhead of the specific transport protocol used in

link e ∈ E (e.g. VLAN/MPLS tags, GTP tunnels, etc.); and 1e ∈p is

equal to 1 only if link e belongs to path p. Finally, in Eq. (4), ητ ,b
maps bitrate resources into radio resources, which can be estimated

with readily available radio models.

We also add the following constraints:∑
p∈Pb,c
∀c ∈C

xτ ,p ≤ 1, ∀τ ∈ T ,∀b ∈ B (5)

to prevent multipath connections;
10∑

p1∈Pm,c

xτ ,p1
≤

∑
p2∈Pn,c

xτ ,p2
, ∀m , n ∈ B,∀c ∈ C,∀τ ∈ T (6)

to guarantee that accepted slices are given a slice of all BSs and that

each BS slice belonging to the same system slice Φτ is connected

to the same CU; and the delay constraint∑
p∈Pb,c
∀c ∈C

xτ ,pDp ≤ ∆τ , ∀τ ∈ T ,∀b ∈ B. (7)

Finally, we formulate the constraints that couple the resource

reservation decisions (z) and the routing/function placement and

access control decisions (x) as follows:

z ⪯ xΛ (8)

xλ̂ ⪯ z (9)

that yield λ̂ ⪯ z ⪯ Λ, if Φτ is accepted, or z = 0, otherwise.

3.3 AC-RR Problem
Consolidating the above, our problem becomes:

Problem 1 (AC-RR Problem).

min

x ∈{0,1}S,z ∈RS+

Ψ(x ,z)

s.t. (2), (3), (4), (5), (6), (7), (8), (9).

We note that Ψ(x ,z) is a quadratic function. Fortunately, the

structure of our problem yields the following conventional lin-

earization technique. First, we create an auxiliary variable yτ ,p :=

zτ ,p · xτ ,p and then rearrange the terms in Ψ to be linear with x
and y as follows. Ψ(x ,z) = Ψ(x ,y) =∑

τ ∈T

∑
p∈Pb,c

∀b ∈B,c ∈C

(
Λτ ,pξτ ,pKτ

Λτ ,p − ˆλτ ,p
− Rτ

)
xτ ,p −

ξτ ,pKτ

Λτ ,p − ˆλτ ,p
yτ ,p .

Second, we add the following constraints to maintain the linearized

problem equivalent to the original Problem 1:

y ⪯ Λx (10)

y ⪯ z (11)

z + Λx ⪯ y + Λ (12)

As a result, our AC-RR problem can be formulated as the following

mixed integer linear problem (MILP):

10
This constraint is motivated by the reluctance of operators to deploy multipath

systems due to additional expenditures and delay (due to packet reordering) [41] but

it can be relaxed if a multipath protocol is implemented [15].

CoNEXT ’18, December 4–7, 2018, Heraklion, Greece J. X. Salvat, L. Zanzi, A. Garcia-Saavedra, V. Sciancalepore, X. Costa-Perez

Problem 2 (AC-RR MILP).

min

x ∈{0,1}S,y∈RS+,z ∈R
S
+

Ψ(x ,y)

s.t. (2), (3), (4), (5), (6), (7), (8), (9), (10), (11), (12).

We next establish the complexity of our problem.

Theorem 1. Problem 2 (and so Problem 1) is NP-Hard.

Proof. The proof goes by reduction. Consider a restricted in-

stance of Problem 2 (or Problem 1) withn tenants with no associated
penalty (Kτ = 0, ∀τ), 1 CU c1 with unlimited capacity Cc1

→ ∞,

1 BS b1 with capacity Cb1
= B, and a simple transport network

with a direct link e1 connecting c1 and b1 with unlimited capacity

Ce1
→ ∞ and no delay. Given this setting, it is trivial to cast this

problem (in polynomial time) into the well-known knapsack prob-

lem [12], which is NP-hard. Adding multiple BSs and CUs increases

the complexity of the problem, making it even harder to solve. This

proves that Problem 2 is NP-Hard. □

3.4 Practical Considerations
There are a few additional practical details we need to consider.

In particular, if tenant τ is accepted in t , we need to ensure that τ is

also accepted in epochs {t + 1, t + 2, . . . , t + Lτ }. This can be done

by adding the following constraint to Problem 2:∑
p∈Pb,c

∀b ∈B,c ∈C

xτ ,p1Ωτ ∈Z>0
= 1,∀τ ∈

{
T (1), . . . ,T (t−1)

}
(13)

where Ωτ is a state variable of slice Φτ indicating the time the slice

has left till expiration (for all previously accepted tenants).

However, (13)may render unfeasibility. Imagine a scenariowhere

two slices have been accepted in t1 for a duration equal to L. Now,
if the load forecast of any tenant exceeds the capacity of some

resource in t2, t2 < t1+L, we would encounter a deficit of resources
that represents an unfeasible setting due to constraint (13). To

address this, we relax the capacity constraints (2)-(4) as follows,∑
τ ∈T

∑
p∈Pb,c
∀b ∈B

aτ + zτ ,pbτ ≤ Cc + δc , ∀c ∈ C (14)

∑
τ ∈T

∑
p∈Pb,c

∀b ∈B,c ∈C

zτ ,pηe1e ∈p ≤ Ce + δb , ∀e ∈ E (15)

∑
τ ∈T

∑
p∈Pb,c
∈C

zτ ,p,iητ ,b ≤ Cb + δr , ∀b ∈ B (16)

and Problem 2 as follows

min

x ∈{0,1}S,y∈RS+,z ∈R
S
+

δr ∈R+,δb ∈R+,δc ∈R+

Ψ(x ,y) +M(δr + δb + δc)

s.t. (14), (15), (16), (5), (6), (7), (8), (9), (10), (11), (12),

where δr ,δb ,δc ∈ R+ are auxiliary variables accounting for the

deficit of radio, transport and computing resources, respectively,

and M is a large value accounting for the cost of leasing these

resources (e.g., via federation) or the penalties that we would have

to pay (also sometimes known as “big M method”). This method

fixes the unfeasibility issue as the resource deficit potentially caused

by Eq. (13) is absorbed by the new auxiliary variables (at a high

costM). While we consider this in our implementation (as shown

in §5), we omit these details in the following analysis to keep our

presentation simple.

4 ALGORITHMS
We next present two algorithms to solve Problem 2: an opti-

mal method based on Benders decomposition, designed for small to

medium-scale networks, and a suboptimal heuristic that expedites

solutions in medium to large-scale networks.

4.1 Benders Method
Our first methodology to solve Problem 2 lies on the observation

that constraints (8), (9), (10) and (12) couple the real-valued resource

reservation decision variables (z, y), and the binary placement and

path selection decision variables (x). We relax these constraints

and decouple the slack problem into two subproblems by means of

Benders decomposition [9]: one that involves the so-called “compli-

cated” variables and one that involves only continuous variables.

We first describe our slave subproblem as follows:

Problem 3 (Slave problem PS (x̄)).

min

y∈RS+,z ∈R
S
+

∑
τ ∈T

∑
p∈Pb,c

∀b ∈B,c ∈C

−
ξτ ,pKτ

Λτ ,p − ˆλτ ,p
yτ ,p

s.t. (2), (3), (4), (11)

z ⪯ x̄Λ (17)

x̄λ̂ ⪯ z (18)

y ⪯ Λx̄ (19)

z + Λx̄ ⪯ y + Λ (20)

which can be solved with standard linear programming solvers, and

define its dual problem as PDS (x̄).

Problem 4 (Dual slave problem PDS (x̄)).

max

µ∈RN
+

д (x̄ , µ)

s.t. − bτ µ1,c −
∑
e ∈p

ηe µ2,e − ητ ,pµ3,b − µ4,τ ,p + µ5,τ ,p+

+ µ7,τ ,p − µ8,τ ,p ≤ 0, ∀b ∈ B,∀c ∈ C,∀p ∈ Pb,c ,∀τ ∈ T
− µ6,τ ,p − µ7,τ ,p + µ8,τ ,p ≤ −

ξτ ,pKτ

Λτ ,p − ˆλτ ,p
,

∀b ∈ B,∀c ∈ C,∀p ∈ Pb,c ,∀τ ∈ T
where д (x̄ , µ) =

∑
c ∈C

µ1,c

©­­­«
∑
τ ∈T

∑
p∈Pb,c
∀b ∈B

aτ −Cc

ª®®®¬ −
∑
e ∈E

µ2,eCe −
∑
b ∈B

µ
3,bCb+

+
∑
τ ∈T

∑
p∈Pb,c

∀b ∈B,c ∈C

(
− µ4,τ ,p x̄τ ,pΛτ ,p + µ5,τ ,p x̄τ ,p ˆλτ ,p−

− µ6,τ ,pΛτ ,p x̄τ ,p + µ8,τ ,p (Λτ ,p x̄τ ,p − Λτ ,p)
)

Overbooking Network Slices through Yield-driven End-to-End Orchestration CoNEXT ’18, December 4–7, 2018, Heraklion, Greece

Algorithm 1 Benders method

1: k ← 1

2: Initialize C1 = C2 = ∅,UB(1) = −LB(1) >> 1

3: while UB(k) − LB(k) > ϵ do
4: LB(k),x (k),θ (k) ← PM(C1,C2)

5: µ(k) ←DS (x
(k))

6: if PDS (x
(k)) is unbounded then

7: µl ← extreme ray

8: C2 ← C2 ∪ {µl }
9: else
10: µm ← extreme point

11: C1 ← C1 ∪ {µm }

12:

Γ =
∑
τ ∈T

∑
p∈Pb,c

∀b ∈B,c ∈C

(
Λτ ,pξτ ,pKτ

Λτ ,p − ˆλτ ,p
− Rτ

)
x
(k)
τ ,p − д

(
x (k), µ(k)

)
13: if UB(k−1) > Γ thenUB(k) = Γ
14: k ← k + 1

15: x∗ = x (k)

16: y∗,z∗ ← PDS (x
(k))

and µ is the vector of N = C + |E | + B + 5S dual variables.

We then formulate our master subproblem as follows:

Problem 5 (Master problem PM (C1,C2)).

min

x ∈{0,1}S,θ ∈R+

∑
τ ∈T

∑
p∈Pb,c

∀b ∈B,c ∈C

(
ξτ ,pKτ

Λτ ,p − ˆλτ ,p
Λτ ,p − Rτ ,p

)
xτ ,p + θ

s.t. (5), (6), (7)

д
(
x , µm

)
≤ θ , ∀µm ∈ C1 (21)

д
(
x , µl

)
≤ 0, ∀µl ∈ C2 (22)

whereθ is a surrogate variable substituting the “cost” of the resource
reservation decisions, and equations (21) and (22) correspond to

the optimality and feasibility cuts, respectively, added iteratively

by Algorithm 1. We then use the iterative Algorithm 1 to solve

Problem 2. The optimality of this approach is formalized in the

following theorem.

Theorem 2 (Algorithm 1 Optimality). Algorithm 1 converges

to the optimal solution of Problem 2 in a finite number of iterations.

Proof. The proof follows from the Partition Theorem in [9]. Let

us consider the abstract formulation of Problem (5):

min

x ,θ
cT

1
x + θ s.t. (x ,θ) ∈ G , (23)

where G is the set of constraints, created by the intersection of

the constraints in X and the convex hull of the extreme halflines

resulting from the dual slave problem (which is a polyhedral cone

C). Algorithm 1 is initialized with empty sets C1 and C2 and thus

G(1) corresponds to a minimal set of constraints. At each iteration

k > 1, the algorithm appends a point of the dual slave problem into

set C1 or C2, which results in the addition of one extreme halfline

of the cone C in G(k). As a result, set G is iteratively reconstructed

and, given that there is a finite number of them, convergence to

the optimal solution is guaranteed because, in the worst case, the

algorithm will reconstruct the full set G. □

4.2 Heuristic Algorithm
While Benders method provides an optimal solution, it might

take long time to converge. For larger scale systems, we propose

a heuristic to solve Problem 5 by casting it into a classical multi-

constrained 0-1 Knapsack problem model [34]:

Problem 6 (Multi-constrained Knapsack Problem).

min

x ∈{0,1}S

∑
τ ∈T

∑
p∈Pb,c

∀b ∈B,c ∈C

γτ ,p xτ ,p

s.t.

∑
τ ∈T

∑
p∈Pb,c

∀b ∈B,c ∈C

w
(k)
τ ,p xτ ,p ≤W

(k), ∀k (24)

∑
j ∈T

∑
p∈Pb,c

∀b ∈B,c ∈C

1j=τ x j,p ≤ 1, ∀τ ∈ T ; (25)

whereγτ ,p andw
(k)
τ ,p in constraint (24) are the cost and theweight

of item xτ ,p , respectively, whereasW
(K)

is the total capacity of the

knapsack. They are defined as follows.

γτ ,p =

(
ξτ ,pKτ

Λτ ,p − ˆλτ ,p
Λτ ,p − Rτ ,p

)
(26)

w
(k)
τ ,p =−µ4,τ ,pΛτ ,p+µ5,τ ,p ˆλτ ,p−µ6,τ ,pΛτ ,p+µ8,τ ,pΛτ ,p (27)

W (k) = −
∑
c ∈C

µ1,c

©­­­«
∑
τ ∈T

∑
p∈Pb,c
∀b ∈B

aτ −Cc

ª®®®¬ +
∑
e ∈E

µ2,eCe+

+
∑
b ∈B

µ
3,bCb +

∑
τ ∈T

∑
p∈Pb,c
∀b ∈B

µ8,τ ,pΛτ ,p . (28)

Note that constraints are dynamically added by Algorithm 1

at each iteration k ≥ 1. The constraint set (25) accounts for con-

straint (5) in Problem 5.

When devising a lightweight solution to solve the above-mentioned

problem, we rely on classical heuristics proposed for knapsack prob-

lems. We name our proposal Knapsack Admission Control (KAC)

algorithm and we show the details in Algorithm 2. First, we com-

bine together different weightsw
(k)
τ ,p into one single value per item

xτ ,p and we calculate the overall system capacityW as follows

w̄τ ,p =
∑
k

ϵkw
(k)
τ ,p , and W̄ =

∑
k

ϵkW
(k), (29)

where ϵk is recursively defined as follows

ϵk =

��������ϵk−1
W (k) −

∑
τ ∈T

∑
p∈Pb,c
∀b ∈B

ϵk−1
w
(k)
τ ,p

�������� , ∀k > 0, (30)

assuming that ϵ0 = 1. This translates the problem into a classical

0-1 Knapsack problem with one single capacity constraint. Thus,

CoNEXT ’18, December 4–7, 2018, Heraklion, Greece J. X. Salvat, L. Zanzi, A. Garcia-Saavedra, V. Sciancalepore, X. Costa-Perez

Algorithm 2 Knapsack-Solver(W̄ , w̄)

1: Initialize H = 0,C = {e} where {e} = {τ ,p},∀τ ,p
2: Calculatewτ ,p andW based on (29)

3: H = W̄
4: for e ∈ C do
5: ϕτ ,p =

γτ ,p
w̄τ ,p

6: Sort C based on ϕτ ,p in a decreasing order

7: while (H > 0 ∧ |C| > 0) do
8: Pool the first e ← C
9: if H −wτ ,p ≥ 0 then
10: xτ ,p = 1

11: H = H −wτ ,p

Algorithm 3 Knapsack Admission Control (KAC)

1: k ← 1

2: Initialize W̄ = ∅, w̄ = ∅, ϵ0 = 1

3: x (k) ← Knapsack-solver(W̄ , w̄)
4: while PDS (x

(k)) is unbounded do
5: µ ← extreme ray

6: Computew(k) andW (k) based on (27) and (28)

7: w̄ = w̄ + ϵkw
(k), W̄ = W̄ + ϵkW

(k)

8: Compute ϵk based on (30)

9: x (k) ← Knapsack-solver(W̄ , w̄)
10: k ← k + 1

11: x∗ = x (k)

12: y∗,z∗ ← PDS (x
(k))

we compute the ratio ϕτ ,p =
γτ ,p
w̄τ ,p

per item xτ ,p . Based on such

ratio, we sort all the items in a decreasing order and we try to fit

them into our system capacity W̄ , following the classical first-fit

decreasing (FFD) algorithm [25].

Algorithm 2 is a heuristic that allows us to expedite solutions

of Problem 5. Then, by combining Algorithm 2 and removing the

optimality cuts from our Benders approach, we can design a fast

method to solve our orchestration Problem 2 in larger scale sce-

narios. We describe such method, descriptively labeled Knapsack

Admission Control (KAC), in Algorithm 3.

4.3 Simulation Results
We now evaluate, with emulated data planes from real operators,

the revenue gains achievable by our approach under different slice

types, traffic patterns and penalties/rewards.

4.3.1 Infrastructure. We consider real urban networks from 3

different operators in Romania (N1), Switzerland (N2) and Italy

(N3), shown in Fig. 4(a)-(c). First, we observe that they do not have

canonical structure. Some BSs are as far as 20Km from the edge CU

(in N3), while others are within 0.1Km range. There is therefore high

path diversity across networks. N1 has high path redundancy (mean

of 6.6 paths), while in N3 several BSs have only 1 path (mean 1.6).

As a result, the delay
11

distribution differs across networks. Second,

they use heterogeneous link technologies. N3 uses mainly fiber, N2

11
Assuming store-and-forward and 12000/Ce , 4 or 5µs/Km (cable or wireless), and

5µs for transmission, propagation, and processing delay.

Slice type R ∆ (ms) Λ (Mb/s) σ (Mb/s) s = {a, b } (CPUs)
(x)eMBB 1 30 50 variable {0, 0}

mMTC (1 + b) 30 10 0 {0, 2}

uRLLC (2 + b) 5 25 variable {0, 0.2}

Table 1: End-to-end network slice template

wireless and N1 fiber, copper andwireless. This induces high diverse

link capacities (from 2 to 200 Gb/s). This diversity, illustrated in Fig.

4(d)-(e), evinces that a one-size-fits-all orchestration policy may be

arbitrarily inefficient.

Romania (N1) and Switzerland (N2) have N = 198 and N =
197 BSs, respectively. We consider Cb = 20 MHz for all BSs b
that, assuming ideal channel conditions and 2x2 MIMO, yield ηb =
20/150.

12
Conversely, Italy (N3) has 1497 radio units clustered in

200 groups of 5-10 radio units. We consider each cluster as one

BS with capacity equal to the aggregate capacity of the cluster

(betweenCb = 80 andCb = 100 MHz). Finally, we connect the edge

CU (green dot in Fig. 4(a)-(c)) with a core CU (not shown in the

figure) with a link with unlimited bandwidth and a latency equal to

20 ms. We let the edge CU have a capacity equal to 20N CPU cores,

i.e., enough capacity to accommodate one mMTC tenant (the more

compute-hungry, as we show later) at maximum load, and the core

CU have five times as much. Moreover, to ease presentation, we

neglect transport overheads and so ηe = 1.

4.3.2 Scenarios. Based on 3GPP guidelines on 5G network de-

sign [44], 3 different slice types may be specified in Network Slice

Selection Assistance Information (NSSAI): enhanced/extreme Mo-

bile BroadBand (e/xMBB), massive Machine-Type-Communications

(mMTC) and ultra reliable low-latency communications (uRLLC).

We rely on such 3 heterogeneous slice types to account for diverse

delay/throughput requirements, summarized in Table 1. The re-

ward R gained when accepting a tenant differs across slice types to

reflect such heterogeneity. Slice requests Φτ are generated with a

fixed Λτ = {Λτ ,p =Λ | ∀p ∈Pb,c ,∀b ∈B,∀c ∈ C}. Then, the actual
traffic demand λ(θ)τ follows a Gaussian distribution with variable

mean
¯λ and standard deviation σ . The only exception is the mMTC

template that has a deterministic load (i.e., σmMTC = 0). Finally, the

service model parametrization s is also shown in the table.

We compare both (Benders and KAC) against a baseline approach
labeled no-overbooking. For the latter, we solve the same AC-RR

problem but we replace constraint (9) with xΛ ⪯ z. As a result,

accepted slices upon the no-overbooking policy are allocated the

amount of resources agreed in their SLA. Note that we use our

optimal Benders method to find the no-overbooking policy and

so it is an upper-bound benchmark. All slice requests are issued

at the beginning of each simulation, which runs until the mean

revenue has a standard error lower than 2%. This is almost immedi-

ate for no-overbooking but it requires longer for our overbooking
methods due to the time needed to learn slice load patterns.

We present results for a variable setting of mean load
¯λ, load

variability σ , and penalty Kτ = K , ∀τ . In our results, depicted

in Fig. 5 and 6, different colors represent different penalties such

that K = m
Λ R, wherem = {1, 4, 16}. In this way, ifm = 1, failing

to serve 10% of the SLA incurs in a penalty equal to 10% of the

reward payed by the tenant (40% if m = 4 and so on). Finally,

we set σ = {0, ¯λ/4, ¯λ/2} with different line types (for Benders)

12
We consider ideal conditions to ease the analysis. In practice, however, radio models

can be used to make a more accurate estimation.

Overbooking Network Slices through Yield-driven End-to-End Orchestration CoNEXT ’18, December 4–7, 2018, Heraklion, Greece

(a) Romanian topology (N1). (b) Swiss topology (N2). (c) Italian topology (N3).

0.00

0.25

0.50

0.75

1.00

0 50 100 150 200

Per−path capacity (Gb/s)

y

R1 (Romanian)

R2 (Swiss)

R3 (Italian)

(d) Path Capacity Distribution

0.00

0.25

0.50

0.75

1.00

0 200 400 600 800

Per−path latency (µsec)

y R1 (Romanian)

R2 (Swiss)

R3 (Italian)

(e) Path Delay Distribution

Figure 4: (a)-(c): Networks from 3 European operators: red dots indicate the BSs’ locations, black dots the routers/switches, and the green dot
an edge CU (placed at the most central position). (d)-(e) Path capacity and delay distribution for the 3 networks.

● ● ●

●

●

●

● ●

● ● ●

●

●

●

● ●

● ● ●

●

●

●

● ●

higher penalty
lower gain

● ●

● ●

●
●

● ●

● ●

●
●

● ●

● ●

●
●

Less backhaul

(than Romanian)

higher gains for eMBB

● ● ●
● ● ● ● ●

● ● ●
● ● ● ● ●

● ● ●
● ● ● ● ●

More networking

but more tenants

similar gains for eMBB

●

●

●

● ● ● ●

●

●

●

●

● ● ● ●

●

●

●

●

● ● ● ●

●

higher load
lower gain

mMTC is predictable traffic

●

●
●

● ● ● ●
●

●

●
●

● ● ● ●
●

●

●
●

● ● ● ●
●

Same computing

(than Romanian)

similar gains for mMTC

●

●

●
● ● ● ●

●

●

●

●
● ● ● ●

●

●

●

●
● ● ● ●

●

Same computing

more tenants

higher gains for mMTC

● ● ● ● ●

●

●

●

● ● ● ● ●

●

●

●

● ● ● ● ●

●

●

●
higher variance, lower gain

● ● ● ● ●
●

●
●

● ● ● ● ●
●

●
●

● ● ● ● ●
●

●
●

●

●
●

● ● ● ● ●

●

●
●

●
● ● ● ●

●

●

● ● ● ● ● ●

eMBB mMTC uRLLC

R
om

anian
S

w
iss

Italian

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8

0
50

100
150
200

0
100
200
300
400

0

500

1000

α (λ = αΛ)

ne
t r

ev
en

ue
 g

ai
n

(%
)

Penalty factor ● ● ●1x 4x 16x

Benders σ = 0 σ = λ 4 σ = λ 2

KAC ● σ = 0 σ = λ 4 σ = λ 2

Figure 5: Relative revenue (percentage) of our approaches over
no-overbooking in homogeneous scenarios. Variable mean load ¯λ.

or shapes (for KAC). We consider a total number of 10 tenants for

“Romanian” and “Swiss” and 75 tenants for “Italian” (with more

radio and transport capacity). In this way, our simulations span not

only realistic topologies but also a wide set of parameters.

4.3.3 Homogeneous cases. We first let all the slices use the same

template and have equal (but independent) service demand statistics

(
¯λ and σ). Fig. 5 depicts the relative net revenue gain (percentage)

with our approaches and with no-overbooking for all slice types
and all topologies described above. In the x-axis, we use parameter

0 ≤ α ≤ 1 to control the mean load of each slice such that
¯λ = αΛ

(e.g., if α = 1 the mean load of Φτ is equal to Λτ).
We note that both KAC and Benders provide equal performance

when all slices are eMBB, regardless of the topology. This is re-

markable because Benders may take a few hours to converge with

some settings whereas KAC boils down this number to a few sec-

onds. In case of mMTC and uRLLC slices, KAC under-performs when

compared to Benders, though it still provides between 200% and

75% additional revenue w.r.t. no-overbooking in low to medium

load regimes. However, as above-mentioned, we use an optimal

method to implement no-overbooking and it thus suffers from

convergence times similar to our optimal method.

Let us focus on the eMBB slices in “Romanian” (top left plot of

Fig. 5). In this setting, no-overbooking obtains a revenue equal to

3 monetary units irrespective of the conditions of the system (not

shown due to space limitations). Regarding our approaches, we

obtain up to 220% additional revenue (i.e., up to 10 monetary units)

when the mean load is low (relative to the SLA). This is intuitive be-

cause the lower the ratio between mean load
¯λ and Λ, the larger the

chances for multiplexing load. The second observation is that, when

σ = 0 (no traffic variability), our approach obtains the same revenue

gains independently from the penalty factor imposed. This results

in overbooking with no risk as the forecasting process is performed

with high certainty. The third due observation is that higher slice

load variability leads to less revenue gains. The rationale behind is

that higher variability incurs in a higher risk of committing an SLA

violation and so our mechanism overbooks more conservatively.

Finally, when σ > 0, higher penalty factors also negatively affect

the potential revenue gains due to a conservative behavior.

The net revenue attained to mMTC or uRLLC is higher (up to 30

and 25 units in “Romanian”, respectively) due to their higher reward.

However, we can observe that the relative gains remain very similar

for all slice types in “Romanian”. This is not the case for “Swiss”,

where the maximum gain of eMBB is twice its gain in “Romanian”

(and twice the gain for mMTC and uRLLC). The reason is that the

transport of “Swiss” is constrained by low-capacity wireless links

whereas the computing capacity (used by uRLLC and specially

mMTC) remains the same. As a result, no-overbooking obtains

less net revenue when there are eMBB slices only w.r.t. “Romanian”.

However, our approaches are capable of accepting more eMBB

tenants when their actual load is limited.

Last, “Italian” has considerably more radio and transport re-

sources than both Romania and “Swiss”, whereas the computing

capacity remains the same. Indeed, no-overbooking obtains up to

25 monetary units when all slices are eMBB (8x more than the same

scenario in “Swiss” and “Romanian”), and very similar net revenue

when slices are mMTC and uRLLC (because they mostly depend on

computing, which keeps constant across topologies). Given that we

have 75 tenants (instead of 10), the relative gains when applying

overbooking are similar for eMBB as in the other topologies. This is

due to the fact that increasing radio and transport capacity benefits

both no-overbooking and our approaches. However, these gains

are substantially higher when the mean load of the slices is mild to

low with mMTC and uRLLC as computing is severely constrained

thereby substantially helping in these load regimes.

Notably, the gains shown in Fig. 5 come at a negligible cost on

the tenants. Specifically, a tenant’s SLA violation occurred with a

CoNEXT ’18, December 4–7, 2018, Heraklion, Greece J. X. Salvat, L. Zanzi, A. Garcia-Saavedra, V. Sciancalepore, X. Costa-Perez

●
●

●
●

●
●

●
● ● ● ●

●
●

●
●

●
● ●

● ● ● ●

●
●

●
●

●
● ●

● ●
●

●

no overbooking

+220%
+75%

+200%

More mMTC

more revenue

+75%

●
●

●
●

●
● ● ● ● ● ●

●
●

●
●

●
●

●
● ● ● ●

●
●

●
●

●
● ● ● ●

● ●

no overbooking

More homogeneous

more rel. gains

+220%

+200%

●

●

●

● ● ● ●
●

● ● ● ●
● ● ●

●

●

●

● ●
● ●

● ● ●
● ● ● ●

●

●

●

●

● ● ● ●

● ● ● ●
● ●

● ●

no overbooking

More radio & BH

same computing

less revenue

● ● ● ● ● ● ● ● ●
● ●

● ● ● ● ●
● ● ● ●

● ●
● ● ● ● ●

● ● ●
● ● ●

no overbooking

More uRLLC

more revenue

Insufficient

edge computing

● ● ● ●
●

● ●
●

● ● ●
● ● ● ● ●

● ● ●
● ● ●

● ● ● ● ● ●
● ●

● ● ●

no overbooking

Same computing

same revenue

as Romanian

Less BH

less revenue

● ●
●

● ● ● ● ●
● ● ● ● ● ● ●

● ●
●

● ● ● ● ● ● ●
● ● ●

● ●

●
●

●

● ● ● ● ● ● ●
● ● ● ● ●

no overbooking

More radio & BH

same computing

less revenue

Insufficient

edge computing

● ●
●

●
● ● ● ●

● ● ●

● ●

●
●

● ●
● ● ●

● ●

● ●

●
●

●
●

● ● ● ●
●

no overbooking

Insufficient

edge computing

● ●
●

● ●
● ● ● ●

● ●

● ●

● ●

●
● ● ● ● ● ●

●
●

●
●

● ● ● ● ● ●
●

no overbooking

Insufficient

edge computing

●
●

●
● ●

● ● ● ● ● ●
● ●

●
● ●

●
●

● ●
● ● ● ● ● ●

● ● ● ● ● ●

●
●

● ● ● ● ● ● ● ●
● ●

●
●

● ●

no overbooking

Insufficient

edge computing

(100 − β)% eMBB

β% mMTC

(100 − β)% eMBB

β% uRLLC

(100 − β)% mMTC

β% uRLLC

R
om

anian
S

w
iss

Italian

0 25 50 75 100 0 25 50 75 100 0 25 50 75 100

0

10

20

30

0

10

20

30

0
30
60
90

120

β

ne
t r

ev
en

ue
 (

m
on

et
ar

y
un

its
)

Penalty factor ● ● ●1x 4x 16x

Benders σ = 0 σ = λ 4 σ = λ 2

KAC ● σ = 0 σ = λ 4 σ = λ 2

Figure 6: Revenue of our approaches (colors) and no-overbooking
(black) in heterogeneous scenarios. Mean load is ¯λ = 0.2Λ.

probability lower than 0.0001% in the most aggressive configuration

(σ = ¯λ/2 andm = 1), and even in such rare cases, the dropped traffic

is as much as 10%. As a sanity check, a more aggressive overbooking

(σ = 3
¯λ/4 andm = 0.01) increases the chances of violating an SLA

to only 0.043% samples with as much as 20% of traffic drop.

4.3.4 Heterogeneous cases. We now consider mixed setups. To

simplify the visualization of our results, we focus on scenarios that

merge eMBB and mMTC, uRLLC and eMBB, and mMTC and uRLLC

slices, respectively, and fix the mean load
¯λτ = 0.2·Λτ . Fig. 6 depicts

the net revenue of our approaches and no-overbooking (with a

black line) for the same range of σ and penalty parametersm used

before. The scenarios have a fix number of slices (10 for “Romanian”

and “Swiss”, 75 for “Italian”) and we vary the percentage of one

type of slice w.r.t. the other using parameter β .

First, let us study the top left plot where we have 10
β

100
mMTC

slices and 10
100−β

100
eMBB slices in “Romanian”. The revenue at-

tained to no-overbooking grows as we increase the ratio of mMTC

tenants until β = 25% onwards when the revenue remains flat. At

that point, no-overbooking is not capable of accommodating com-

puting resources to the increasing number of mMTC slices but

there are sufficient eMBB slices to compensate. This occurs until

β = 75 where there are not enough eMBB tenants and therefore the

revenue falls as computing resources are fully consumed. In marked

contrast, our approach obtains a linearly increasing revenue as we

increase the number of mMTC slices that are all eventually accepted.

Interestingly, the larger relative gains over no-overbooking occurs
when the scenario is more homogeneous (β = 0% and β = 100%).

Similar observations can be obtained from the other two mixes of

slice types. We obtain similar revenues also for “Swiss”. The main

difference is that, given the constrained transport, higher values of

σ and higher penalty factors incur in lower revenues compared to

the “Romanian” topology.

Compared to “Romanian” and “Swiss”, similar revenue trends

are observed for no-overbooking but substantially different for

our approaches in “Italian” taking the first case (eMBB and mMTC

slices). The revenue of both Benders and KAC rapidly grows as we

accept more mMTC slices while declining after we reach β = 25%.

Counter-intuitively, while “Italian” has substantially more radio

and transport resources (and more slice requests) than the other

two topologies, the computing resources are essentially the same,

and there are not sufficient eMBB slices to compensate the rejected

mMTC slices from β = 25% onwards. Similar observations can be

made for “Italian” in the other two mixes of slices.

Importantly, our overbooking schemes cause SLA violations as

often as in the homogeneous case (less than 0.001% samples with

the most aggressive configuration) and so our gains come at a

negligible cost for the tenants. In this way, we conclude that our

system manages to trade off hard SLA guarantees of traditional

systems for substantial revenue gains with minimal SLA violations

and practically zero footprint from the overbooking scheme.

5 EXPERIMENTAL PROOF-OF-CONCEPT
We evaluate our orchestrator

13
with a real data plane. To this

aim, we deploy the experimental testbed depicted in Fig. 7. The

hardware components are summarized in Table 2.

In the RAN, we use 2 commercial BSs with RAN sharing support

and we use different PLMN-Ids [45] to identify slices due to the

lack of 5G network slicing-support equipment. The proprietary

interface of the BSs allows us to grant shares of bandwidth, physi-

cal radio blocks (PRBs) specifically, to different mobile networks

13
The algorithm implementation has been carried out using the framework of IBM

ILOG CPLEX and its Python API.

Figure 7: Testbed
Device type Description Ref.

vEPCs OpenEPC Rel. 7 (1x per slice) [4]

UEs Samsung Galaxy 7 (1x per slice and BS) [5]

Transport OpenFlow 1.5 switch with 48 1-gigabit ports [3]

RAN 2x 20 MHz NEC small cell with RAN sharing @ band 3 [2]

CU OpenStack Queens with 16 (Edge) and 64 (Core) CPUs [1]

Table 2: Detailed HW components in our testbed

Overbooking Network Slices through Yield-driven End-to-End Orchestration CoNEXT ’18, December 4–7, 2018, Heraklion, Greece

uRLLC1

accepted

uRLLC1

accepted

uRLLC2

accepted

uRLLC2

rejected

uRLLC3

rejected

uRLLC3

rejected

mMTC1

accepted

mMTC1

accepted

mMTC2

accepted

mMTC2

rejected

mMTC3

rejected

mMTC3

rejected

eMBB1

accepted

eMBB1

accepted

eMBB2

accepted

eMBB2

accepted

eMBB3

accepted

eMBB3

rejected

0

10

20

06
:0

0
08

:0
0

10
:0

0
12

:0
0

14
:0

0
16

:0
0

18
:0

0
20

:0
0

22
:0

0

Time of day

ne
t r

ev
en

ue
 (

m
on

et
ar

y
un

its
)

No overbooking Our approach

(a) Net Revenue.

Resource
reservation

Tenant
load

Resource
capacity

No overbooking Our approach

B
S

 0
B

S
 1

06
:0

0
08

:0
0
10

:0
0
12

:0
0
14

:0
0
16

:0
0
18

:0
0
20

:0
0
22

:0
0

06
:0

0
08

:0
0
10

:0
0
12

:0
0
14

:0
0
16

:0
0
18

:0
0
20

:0
0
22

:0
0

0

25

50

75

100

0

25

50

75

100

Time of day

B
S

 s
ha

re
 (

P
R

B
s)

uRLLC1
uRLLC2

mMTC1
mMTC2

eMBB1
eMBB2

eMBB3

(b) Radio utilization.

Tenant
load

Resource
reservation

No overbooking Our approach

Link 0
Link 1

06
:0

0
08

:0
0
10

:0
0
12

:0
0
14

:0
0
16

:0
0
18

:0
0
20

:0
0
22

:0
0

06
:0

0
08

:0
0
10

:0
0
12

:0
0
14

:0
0
16

:0
0
18

:0
0
20

:0
0
22

:0
0

0

50

100

150

0

50

100

150

200

Time of day

N
et

w
or

k
sh

ar
e

(M
b/

s)

uRLLC1
uRLLC2

mMTC1
mMTC2

eMBB1
eMBB2

eMBB3

(c) Transport utilization.

Tenant
load

Resource
reservation Resource

capacity

No overbooking Our approach

E
dge

C
ore

06
:0

0
08

:0
0
10

:0
0
12

:0
0
14

:0
0
16

:0
0
18

:0
0
20

:0
0
22

:0
0

06
:0

0
08

:0
0
10

:0
0
12

:0
0
14

:0
0
16

:0
0
18

:0
0
20

:0
0
22

:0
0

0

5

10

15

0

20

40

60

Time of day

C
P

U
 lo

ad
 (

co
re

s)

uRLLC1
uRLLC2

mMTC1
mMTC2

eMBB1
eMBB2

eMBB3

(d) Computation utilization.

Figure 8: Net revenue over time (a); and resource reservation and actual utilization across BSs (b), two transport links (c) and both CUs (d),
respectively, for 9 heterogeneous slice requests arriving at different times.

(associated with a different PLMN-id).
14

The BSs are set in 20-MHz

channels (capacity equal to 100 PRBs). In the transport, we use a

programmable OpenFlow switch to virtualize the backhaul topology
shown in Fig. 1, comprised of 1-Gb/s Ethernet links. For comput-

ing, we connect two conventional servers with two 1Gb/s Ethernet

links, respectively. The first server has 16 CPU cores and emulate

an edge CU; the second has 64 CPU cores and we use netem to

emulate 30 ms latency in its backhaul link, emulating a core CU.

To construct each slice’s network service (see Fig. 1), we create a

VM instance of OpenEPC to connect the slice to the mobile system,

a VM with our rate-control middlebox and an additional VM with

mgen to generate traffic with custom traffic patterns, emulating the

VS of the slice. Finally, we use one Android smartphone per slice

and BS, connected to the BS with coaxial cables for isolation, to

emulate a crowd of UEs receiving traffic from each VS.

We set up a dynamic scenario where slice requests arrive every

2 epochs for a total of 18 epochs (i.e., up to 9 slices). We take one

monitoring sample every 5 minutes (which is conventional [31]),

and collect 12 samples per epoch (i.e., 1 hour). The first three slice

requests “uRLLC1”, “uRLLC2”, “uRLLC3” are uRLLC (with the pa-

rameters described in Table 1), the next three “mMTC1”, “mMTC2”,

“mMTC3” are mMTC and the remaining slices “eMBB1”, “eMBB2”,

“eMBB3” are eMBB. To ease the analysis, we fix the mean load of

each slice to be half its Λ (SLA) with a standard deviation equal to

10% of its mean, and a penalty equal to K = R
Λ (m = 1 in Fig. 5 and

6). We repeat the experiment with our approach (using Benders)

and with “no overbooking”. The results are summarized in Fig. 8(a)-

(d). Fig. 8(a) shows the net revenue per BS of both approaches over

time; and Fig. 8(c)-(d) show, with stacked areas, the utilization and

the actual reservation made on each domain of the system. For the

transport, we selected the two links that connect each CU to the rest

of the system to guarantee that any possible path is represented.

The first 3 slice requests (uRLLC) arrive at 6h, 8h and 10h, re-

spectively, requesting an aggregate of 10 CPUs each in the edge CU.

While “no overbooking” accepts only “uRLLC1”, our mechanism

adapts the CPU reservation to the actual load of the slices and thus

accepts also “uRLLC2” as shown by Fig. 8(d). This results in twice

the revenue we obtain at 10h. The next 3 slice requests are mMTC

requesting up to 40 CPUs. Similarly, our approach adapts the CPU

14
We use commercial BSs for convenience; however, our approach is a natural fit to

open source initiatives such as [13].

reservation to the actual load and allows us to accept an additional

slice over “no overbooking”, which results in 100% revenue gain

at 16h. From this time on, one eMBB slice request arrives every

2h requesting 50 Mb/s service SLA. This forces “no overbooking”

to accept only 2 slices at the moment, since some radio resources

are already used by uRLLC and mMTC tenants. Conversely, our

approach allows us to squeeze one extra eMBB slice, leading at an

extra 86% revenue after 22h.

6 RELATEDWORK
As a result of the 5G hype, network slicing has recently gained

much attention. However, most of the literature focuses on domain-

specific issues that leave a significant gap in the design of practical

mechanisms for the end-to-end orchestration of network slices.

In addition, most research focuses either on analytical work with

considerable system assumptions or, conversely, on the design of an

orchestration system that neglects formal analysis of optimization

models. In our work, we design an end-to-end orchestration system

that is feasible in practice and relies on well-grounded optimization

methods to make yield-driven decisions, as shown in our simulation

and experimental assessments.

A RAN admission controller was presented in [39], an experimen-

tal prototype of a slice-capable LTE stack was introduced in [13],

a preliminary network slicing orchestration solution was shown

in [49], and a radio resource allocation algorithm achieving fairness

and isolation among different slices was designed and analyzed in

[10]. All these works show that substantial multiplexing gains can

be attained by designing a proper radio resources slicing solution.

The key feature to support network slicing is customization

of mobile system resources. With this in mind, different studies

analyze the slicing of transport and cloud resources. The Virtual

Network Embedding (VNE) [18, 51] and Virtual Network Function

(VNF) placement problems [8, 17, 40] have become very popular in

the last few years. In [37], the authors integrate two well-known

NP-hard problems to model the VNF placement problem: a facility

location problem and a generalized assignment problem. Later, this

framework was extended with real-time constraints [46]. In [47], an

approximate Markov-decision-process-based algorithm is designed,

and a first approximation algorithm to solve the VNF placement

problem is presented in [38]. The works of [8, 17] focus on the or-

chestration of service function chains in cloud platforms via linear

CoNEXT ’18, December 4–7, 2018, Heraklion, Greece J. X. Salvat, L. Zanzi, A. Garcia-Saavedra, V. Sciancalepore, X. Costa-Perez

programming (LP) relaxation and a heuristic, respectively. In [26],

the joint problem of deploying chains of virtual functions and path

computation in a distributed cloud is studied. A similar problem

is addressed by [21] and [6], where the joint VNF placement and

routing problem is considered. These works allow the deployment

of multiple instances of the same service chain in case of several

traffic flows generated by many distributed nodes. Finally, a ser-

vice model where datacenter slices are dynamically created over

commodity hardware was proposed in [14]. Then, on top of each

slice, an on-demand virtualized infrastructure manager (VIM) is

instantiated to control the allocated resources.

To summarize, despite the attention that network slicing has

received upon the wave of 5G, the design of an orchestration solu-

tion that spans across multiple domains of a mobile network and

the design of business models that take advantage of it, remain as

open challenges. Our work is, to the best of our knowledge, the

first attempt to fill this gap.

7 CONCLUSIONS
In this paper, we have presented a novel yield-driven orchestra-

tion platform that explores the concept of slice overbooking. No-

tably, our solution is specifically designed for the orchestration

of slices end-to-end, across multiple heterogeneous domains of

the mobile ecosystem. To this aim, our design is based on a hier-

archical control plane that governs multiple domain controllers

across a mobile system and uses ETSI-compliant interfaces and

data models. Our system embeds a control engine in charge of

making (i) admission control and (ii) resource reservation deci-

sions by exploiting monitoring and forecasting information. Our

overbooking mechanism is grounded on an optimization formu-

lation providing provably-performing algorithms that achieve up

to 3x revenue gains in several realistic scenarios built upon data

from three real mobile operators. Finally, we have presented an

experimental proof-of-concept that validates the feasibility of im-

plementing our approach with conventional mobile equipment on

top of available open-source software.

ACKNOWLEDGEMENTS
We thank our shepherd, Jia Wang, and the anonymous reviewers

for their valuable comments and feedback.

This work was supported in part by the H2020 5G-Transformer

Project under Grant 761536 and in part by H2020-MSCA-ITN-2015

5G-Aura Project under Grant 675806.

REFERENCES
[1] HP DL380p Gen8 server. https://www.hpe.com/h20195/v2/default.aspx?cc=za&

lc=en&oid=5177957.

[2] NEC MB4420. https://uk.nec.com/en_GB/global/solutions/nsp/sc2/.

[3] NEC PFlow. http://www.nec.com/en/global/prod/pflow/pf5240.html.

[4] OpenEPC. http://www.openepc.com/.

[5] Samsung Galaxy S7. http://www.samsung.com/global/galaxy/galaxy-s7/.

[6] Agarwal, S., et al. Joint VNF Placement and CPU Allocation in 5G. In IEEE

INFOCOM (2018).

[7] Andrews, J. G., et al. What Will 5G Be? IEEE Journal on Selected Areas in

Communications 32, 6 (Jun. 2014), 1065–1082.

[8] Bari, M. F., et al. Orchestrating virtualized network functions. IEEE Transactions

on Network and Service Management (2016).

[9] Benders, J. F. Partitioning procedures for solving mixed-variables programming

problems. Num. Mathematik 4, 1 (Dec 1962), 238–252.

[10] Caballero, P., et al. Multi-Tenant Radio Access Network Slicing: Statistical

Multiplexing of Spatial Loads. IEEE/ACM Transactions on Networking (Oct. 2017).

[11] Chen, B., et al. Smart factory of industry 4.0: Key technologies, application

case, and challenges. IEEE Access (2017).

[12] Chu, P., and Beasley, J. A genetic algorithm for the multidimensional knapsack

problem. Journal of Heuristics 4 (Jun. 1998), 63–86.

[13] Foukas, X., et al. Orion: RAN Slicing for a Flexible and Cost-Effective Multi-

Service Mobile Network Architecture. In ACM MobiCom ’17 (2017), pp. 127–140.

[14] Freitas, L., et al. Slicing and Allocation of Transformable Resources for the

Deployment of Multiple Virtualized Infrastructure Managers (VIMs). In IEEE

Conference on Network Softwarization (Jun. 2018).

[15] Garcia-Saavedra, A., et al. Low delay random linear coding and scheduling

over multiple interfaces. IEEE Transactions on Mobile Computing (Nov 2017).

[16] Garcia-Saavedra, A., et al. Joint optimization of edge computing architectures

and radio access networks. IEEE JSAC (2018).

[17] Gember, A., et al. Stratos: A network-aware orchestration layer for middleboxes

in the cloud. Tech. rep., 2013.

[18] Gong, L., et al. Toward profit-seeking virtual network embedding algorithm

via global resource capacity. In IEEE INFOCOM (Apr. 2014), pp. 1–9.

[19] GSMA. Smart 5GNetworks: enabled by network slicing and tailored to customers’

needs, Sep. 2017.

[20] Guan, Z., and Melodia, T. The value of cooperation: Minimizing user costs

in multi-broker mobile cloud computing networks. IEEE Transactions on Cloud

Computing 5, 4 (Oct 2017), 780–791.

[21] Gupta, A., et al. A Scalable Approach for Service Chain Mapping With Mul-

tiple SC Instances in a Wide-Area Network. IEEE journal on Selected Areas in

Communications 36, 3 (Mar. 2018), 529–541.

[22] Huang, J., et al. An In-depth Study of LTE: Effect of Network Protocol and

Application Behavior on Performance. SIGCOMM Comput. Commun. Rev. 43, 4

(Aug. 2013), 363–374.

[23] J. Kuo, et al. Service chain embedding with maximum flow in software defined

network and application to the next-generation cellular network architecture. In

IEEE INFOCOM (May 2017).

[24] Kavanagh, A. OpenStack as the API framework for NFV: the benefits, and the

extensions needed. Ericsson Review 2 (2015).

[25] Korf, R. E. A new algorithm for optimal bin packing. In Eighteenth National

Conference on Artificial Intelligence (2002), American Association for Artificial

Intelligence, pp. 731–736.

[26] Kuo, T. W., Liou, B. H., Lin, K. C., and Tsai, M. J. Deploying chains of virtual

network functions: On the relation between link and server usage. In IEEE

INFOCOM (Apr. 2016), pp. 1–9.

[27] Le, F., et al. Understanding the performance and bottlenecks of cloud-routed

overlay networks: A case study. CAN ’16, ACM, pp. 7–12.

[28] Le, F., Nahum, E., Pappas, V., Touma, M., and Verma, D. Experiences Deploying

a Transparent Split TCP Middlebox and the Implications for NFV. HotMiddlebox

’15, ACM, pp. 31–36.

[29] Li, X., et al. 5G-Crosshaul Network Slicing: Enabling Multi-Tenancy in Mobile

Transport Networks. IEEE Communications Magazine 55, 8 (2017), 128–137.

[30] Maki, I., et al. Performance analysis and improvement of tcp proxy mechanism

in tcp overlay networks. In IEEE ICC ’05 (2005).

[31] Marqez, C., et al. Not all apps are created equal: Analysis of spatiotemporal

heterogeneity in nationwide mobile service usage. In ACM CoNEXT ’17 (2017).

[32] Marqez, C., et al. How Should I Slice My Network? A Multi-Service Empirical

Evaluation of Resource Sharing Efficiency. In ACM MobiCom ’18 (2018).

[33] Mendelson, H., and Whang, S. Optimal incentive-compatible priority pricing

for the M/M/1 queue. Operations research 38, 5 (1990), 870–883.

[34] Nauss, R. The 0 1 knapsack problem with multiple choice constraints . European

Journal of Operational Research 2, 2 (1978), 125–131.

[35] NGMN Alliance. Description of Network Slicing Concept. White Paper (2016).

[36] Qian, F., et al. Periodic transfers in mobile applications: Network-wide origin,

impact, and optimization. In Proceedings of WWW ’12 (2012), pp. 51–60.

[37] R. Cohen, et al. Near optimal placement of virtual network functions. In IEEE

INFOCOM (Apr. 2015), pp. 1346–1354.

[38] Sang, Yu , et al. Provably efficient algorithms for joint placement and allocation

of virtual network functions. In IEEE INFOCOM (2017).

[39] Sciancalepore, V., et al. Mobile Traffic Forecasting for Maximizing 5G Network

Slicing Resource Utilization. In IEEE INFOCOM (2017).

[40] Sciancalepore, V., Yousaf, F. Z., and Costa-Perez, X. z-TORCH: An Automated

NFV Orchestration and Monitoring Solution. IEEE Transactions on Network and

Service Management (2018).

[41] Singh, S. K., et al. A survey on internet multipath routing and provisioning.

IEEE Communications Surveys Tutorials 17, 4 (Fourthquarter 2015), 2157–2175.

[42] Subramanian, J., et al. Airline yield management with overbooking, cancella-

tions, and no-shows. Transportation science (1999), 147–167.

[43] Taylor, J. W. Exponentially weighted methods for forecasting intraday time

series with multiple seasonal cycles. International Journal of Forecasting (2010).

[44] Third Generation Partnership Project (3GPP). System Architecture for the

5G System; Stage 2 (Release 15). 3GPP TS 23.501 v15.2.0, June 2018.

https://www.hpe.com/h20195/v2/default.aspx?cc=za&lc=en&oid=5177957
https://www.hpe.com/h20195/v2/default.aspx?cc=za&lc=en&oid=5177957
https://uk.nec.com/en_GB/global/solutions/nsp/sc2/
http://www.nec.com/en/global/prod/pflow/pf5240.html
http://www.openepc.com/
http://www.samsung.com/global/galaxy/galaxy-s7/

Overbooking Network Slices through Yield-driven End-to-End Orchestration CoNEXT ’18, December 4–7, 2018, Heraklion, Greece

[45] Xenakis, D., et al. Mobility Management for Femtocells in LTE-Advanced: Key

Aspects and Survey of Handover Decision Algorithms. IEEE Communications

Surveys Tutorials 16, 1 (July 2014), 64–91.

[46] Yang, L., et al. Network functions virtualization with soft real-time guarantees.

In IEEE INFOCOM (2016), pp. 1–9.

[47] Z. Han , et al. Dynamic virtual machine management via approximate markov

decision process. In IEEE INFOCOM (Apr. 2016), pp. 1–9.

[48] Zanella, A., et al. Internet of things for smart cities. IEEE Internet of Things

Journal 1, 1 (Feb 2014), 22–32.

[49] Zanzi, L., et al. Overbooking network slices end-to-end: Implementation and

demonstration. In SIGCOMM ’18 (poster and demo session) (2018).

[50] Zhang, C., and Patras, P. Long-term mobile traffic forecasting using deep

spatio-temporal neural networks. In ACM Mobihoc ’18 (2018), Mobihoc ’18.

[51] Zhang, S., et al. An opportunistic resource sharing and topology-awaremapping

framework for virtual networks. In IEEE INFOCOM (2012).

	Abstract
	1 Introduction
	2 System Design and Model
	2.1 Data Plane
	2.2 Control Plane

	3 Admission Control & Resource Reservation (AC-RR) Problem
	3.1 Design of the objective function
	3.2 Constraints
	3.3 AC-RR Problem
	3.4 Practical Considerations

	4 Algorithms
	4.1 Benders Method
	4.2 Heuristic Algorithm
	4.3 Simulation Results

	5 Experimental Proof-of-Concept
	6 Related Work
	7 Conclusions
	References

