
Computer Communications 133 (2019) 59–66

Contents lists available at ScienceDirect

Computer Communications

journal homepage: www.elsevier.com/locate/comcom

Cellular access multi-tenancy through small-cell virtualization and
common RF front-end sharing
Jose Mendes a,∗, XianJun Jiao b, Andres Garcia-Saavedra a, Felipe Huici a, Ingrid Moerman b

a NEC Laboratories Europe, Germany
b Ghent University - imec, IDLab, Belgium

A B S T R A C T

Mobile traffic demand is expected to grow as much as eight-fold in the coming next five years, putting strain in current wireless infrastructures. Meanwhile the
diversity of traffic and standards may explode as well. One of the most common means for matching these mounting requirements is through network densification,
essentially increasing the density of deployment of operators’ base stations in many small cells and handling timing critical traffic at the edge. In this paper we
take a step in that direction by implementing a virtualized small cell base station consisting of multiple, isolated LTE PHY stacks running concurrently on top of a
hypervisor deployed on a cheap, off-the-shelf x86 server and a shared radio head. In particular, we show that it is possible to run multiple virtualized base stations
while achieving throughput equal or close to the theoretical maximum. In contrast to C-RAN (Cloud/Centralized Radio Access Network), our virtualized small cell
base station has full stack at the edge so that a low latency high throughput front-haul, which is necessary in C-RAN architecture, is not needed. This approach brings
all the flexibility and configurability (from network management point of view) that a software based implementation provides while the transparent architecture
enables the possibility of multiple standards sharing the same radio infrastructure.

1. Introduction

In the coming years, growth in mobile data traffic, fueled by the
continued adoption of mobile devices and their use for downloading
video and other content, will continue to expand at a rapid pace, with
reports claiming as much as an eight-fold increase over the course of
the next five years [1]. In that same time period, 70% of the world’s
population is forecast to use mobile devices. Along these lines, 5G
networks are supposed to cope with 1000 times higher data volume per
geographical area, 10–100 times more connected devices and 10–100
times higher typical user data rate, among others [2].

Such towering numbers will put significant strain on existing mobile
infrastructure. Network densification [3] is a well-recognized mean to
increase spectrum efficiency in cellular systems, and thus data traffic
capacity. The obvious way of densifying Radio Access Networks (RANs)
is to deploy more radio access points per unit area. However, deploying
such infrastructure represents a significant cost for network operators,
rendering this approach less than attractive in practice. It is reported, for
instance, that today 50% of radio sites yield less than 10% of operators’
revenue [4].

In order to achieve a good degree of densification without com-
promising cost efficiency, infrastructure sharing has become a pivotal
strategy guiding the design of next generation mobile networks. It is
estimated that network sharing can make up for 20% of operational costs
in typical European operators, halving the infrastructure cost of passive
RAN components (which make up to 50% of the total network cost) [5].

∗ Corresponding author.
E-mail addresses: jmml.mendes@gmail.com (J. Mendes), xianjun.jiao@ugent.be (X. Jiao).

However, efficiently and safely sharing such radio access points
remains challenging. In this paper, we argue that the combination
of applying virtualization technologies (e.g., Xen, KVM [6,7]) to base
station software, along with the use of inexpensive radio front-ends
(also called radio head) is a key enabler of network densification.
Virtualization provides the strong isolation needed to safely run multiple
(virtualized) base stations belonging to different operators on shared
hardware, thus increasing the density of each of those operators’ net-
works and improving the efficiency of the deployed hardware through
statistical multiplexing. Regarding radio front-ends, LTE modems based
on Software Defined Radio (SDR) [8,9] are gaining momentum as a
solution to future dense deployments [10]; a remarkable example is
Facebook’s OpenCellular project [11].

Towards this vision of network densification and infrastructure
sharing, we provide a prototypical implementation of a high perfor-
mance virtualized platform consisting of an off-the-shelf, inexpensive
x86 server running the PHY layer of multiple virtualized LTE base
stations (called eNodeBs or eNBs for short) instances along with a
common, shared radio head (called SRH hereafter). We focus on the
PHY layer since this has been shown to be far the most computationally
expensive part of an eNB, sometimes consuming up to 2/3 of the
available CPU cyles [12–14]. The sharing of Radio Head is achieved
by manipulating IQ samples which implies transparent multitenancy.
So, it would be possible for the LTE base station to be multiplexed
over different technologies/standards. This manuscript is an extended

https://doi.org/10.1016/j.comcom.2018.10.010
Received 12 January 2018; Received in revised form 11 July 2018; Accepted 25 October 2018
Available online 3 November 2018
0140-3664/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.comcom.2018.10.010
http://www.elsevier.com/locate/comcom
http://www.elsevier.com/locate/comcom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comcom.2018.10.010&domain=pdf
mailto:jmml.mendes@gmail.com
mailto:xianjun.jiao@ugent.be
https://doi.org/10.1016/j.comcom.2018.10.010


J. Mendes et al. Computer Communications 133 (2019) 59–66

Fig. 1. Virtualized base station overall architecture.

Table 1
Sampling rate and bandwidth of different systems.

Baseband sampling rate Channel
bandwidth

Wi-Fi 20/40/80/160 Msps 20/40/80/ 160
MHz

Bluetooth Low
Energy (4.0)

1 Msps 2 MHz

GSM 270.883 Ksps 200 KHz
IS-95 1.2288 Msps 1.25 MHz
CDMA2000 3*1.2288 Msps 5 MHz
WCDMA 3.84 Msps 5 MHz
LTE standard 1.92/3.84/7.68/15.36/23.04/30.72 Msps 1.4/3/5/10/15/

20 MHz
srsLTE 1.92/3.84/5.76/11.52/15.36/23.04 Msps 1.4/3/5/10/15/

20 MHz

version of our preliminary work [15]. In greater detail, in this paper we
show that:

• Standard x86 hardware is capable of handling the LTE PHY stacks
of multiple (independent) eNBs, properly multiplexing their access
to a common radio front-end;

• Inexpensive SDR equipment can satisfy the bandwidth require-
ments needed by mobile device applications, including content
delivery.

• The use of full-fledged virtualization (i.e., as opposed to contain-
ers) does not degrade performance.

• The multiplexing/de-multiplexing of IQ samples, which tradition-
ally is done in hardware (FPGA/ASIC), can be done in software
and fulfill the performance requirements.

To the best of our knowledge, this is the first work presenting
promising results of multiple, virtualized LTE PHY layer stacks sharing
commodity SDR equipment. In particular, our results show that a
virtualized eNB can yield throughput at the theoretical maximum rate
in certain setups (virtual eNBs with 5 MHz bandwidth), and that up to
4 virtualized eNBs can concurrently run on an inexpensive 4 core x86
server without maxing out its CPU resources.

2. Design and implementation

The overall architecture of our virtual eNB environment is depicted
in Fig. 1. Our system consists of three modules: eNB, mux, and radio
front-end.

The first module, represented in the left-most part of Fig. 1, consists
of a set of virtual eNBs (VeNBs). Each VeNB, in turn, comprises the LTE
eNB software itself, a virtualization environment, and a guest operating
system running on commodity x86 servers. Regarding software, we
use srsLTE [8], a highly modular open-source LTE library which is

relatively simple to modify and use. In addition, we choose KVM as our
virtualization platform and use Linux guests to house the virtualized
base station software.

In the right-most part of the figure, we represent the actual radio
front-ends or shared radio heads. To this aim, we employ an USRP B210,
commonly used for software defined radio [8]. This board provides
56 MHz of real-time bandwidth, a programmable Spartan6 FPGA, and
fast SuperSpeed USB 3.0 for connectivity with the eNB software. For
tests purposes, we employ a set of additional USRP boards and servers
deploying the LTE UE software counterpart that allow us to connect to
each of the virtual eNBs.

In between, we implement and deploy a mechanism to multiplex
signals from the multiple virtual base stations onto the SRH for trans-
mission (Tx) as well as the ability to split the incoming signal back to
the corresponding eNBs, i.e. reception (Rx). To this end, we implement
a frequency multiplexing IQ switch that receives IQ samples (digitized
radio signals) from the VeNBs and shifts those to different frequency
locations in a wider bandwidth. The merged signal, which has higher
sampling rate and wider bandwidth than those of the individual VeNBs,
is sent to the SRH. To avoid overlapping or interference between the
VeNBs, we use a DUC (Digital Up Converter) composed of an upsampling
filter and a frequency shifting module.

In order to comply with the Nyquist theorem and achieve efficient
computation, we set the sampling rate of the final signal as follows. First,
we calculate the least common multiplier from the baseband sampling
rate of the different VeNBs (e.g., 30 if three VeNBs have sampling rate
3 MHz, 5 MHz and 10 MHz). Then, we take increasing multiples of this
multiplier until the result is higher than the sum of the VeNBs’ sampling
rate (in the example, the total is 3 + 5 + 10 = 18, so we would set the
final signal’s sampling rate to 30 MHz). Finally, it is worth pointing out
that the IQ switch/demux is implemented using GNU Radio [16] (see
Fig. 2).

The main challenges of IQ switch implementation are high computa-
tional intensity and flexible control of each signal path. High computa-
tional intensity comes from the fact that merged signal has the highest
sampling rate in the whole system, which means IQ switch module
needs to process multiple times number of samples compared with
each signal path. Flexible control is required in real world deployment
considering each operator/base station may need different bandwidth
and center frequency according to government or operator’s frequency
plan. In the domain of digital signal processing, a wide design space has
been explored to converge to our current IQ switch solution. Polyphase
and FFT based channelizer is explored at first, but they only achieve
a small aggregated bandwidth (also seen in [17]). The reason is that
polyphase and FFT based channelizer’s high computation efficiency
relies on special conditions: baseband sampling rate and channel spac-
ing/bandwidth are equal or has integer times relationship which is
true for system like Wi-Fi and Bluetooth Low Energy but not true for
most of mobile communication system (LTE in our case). Table 1 shows

60



J. Mendes et al. Computer Communications 133 (2019) 59–66

Fig. 2. Experimental setup to validate our IQ switch design.

Table 2
SNR threshold to achieve 1% BLER.

LTE MCS index 0 5 10 15 20 25 28

Without
adjacent channel
interference

4.4 dB 8 dB 9 dB 13.5 dB 17 dB 22 dB 28.6 dB

With adjacent
channel
interference

8 dB 10 dB 11.3 dB 13.5 dB 17.8 dB 24.7 dB 29.5 dB

this phenomenon. Complicated resampler (in time domain or frequency
domain involving different size of FFT) has to be used together with
fractional relationship between sampling rate and channel bandwidth,
and this extra complication finally results in only a small aggregated
bandwidth according to our profiling. Polyphase Channelizer also has
limitation on central frequency of each channel, which leads to less
flexibility regarding fine tuning central frequency of each base station.
After exploring many design options, such as FFT Filter and Polyphase
Channelizer in GNU Radio, our final design (see Fig. 2), accelerated
by VOLK (Vector Optimized Library of Kernels) [18], achieves good
computational efficiency (much bigger aggregated bandwidth compared
to [17]) and flexible control of each signal path: both bandwidth (via
coefficients of Interpolating FIR Filter) and central frequency (via phase
increment of Rotator).

In summary, the workflow is as follows. Each VeNB runs srsLTE in a
Linux VM and output the IQ samples over a TCP socket. From there,
the samples arrive at the GNU radio IQ switch where their TCP/IP
headers are stripped in the TCP Source block. After that, upsampling
and frequency shifting are done in the Interpolating FIR (Finite Impulse
Response) Filter and Rotator blocks, respectively, and the signals from
all the VeNBs are merged in the Sum block. Next, the signals are sent
to the SRH via the USRP Sink block which communicates with the UHD
driver and, eventually, with the SRH (a USRP B210 radio in our case)
over USB3. Note that due to space constraints we do not show a diagram
for the demux (i.e., for receiving IQ samples from the SRH going to the
eNBs).

3. Validation and evaluation

In this section we first validate the design approach taken in the
design of our IQ switch, and then we provide a thorough performance
evaluation of our virtualized multi-VeNB platform.

3.1. IQ switch validation

Our first set of experiments is aimed at validating our IQ switch
implementation. The experimental setup, illustrated in Fig. 2, consists
of two sources of IQ samples emulating two VeNBs using a common
USRP radio front-end. Each VeNB is configured with 5 MHz of channel

Fig. 3. Frequency response of our FIR design.

Fig. 4. Performance of two IQ generators multiplexed by our IQ switch design.

width. The parameter of our FIR is decided according to the specific
properties of the LTE signals to handle. In case of 5 MHz VeNBs, each
IQ flow is comprised of 300 subcarriers with subcarrier spacing 15 kHz.
That means that the effective bandwidth occupied by these subcarriers
is 4.5 MHz. In other words, LTE already provides a guard band which
allows us to use a more relaxed FIR design. Based on this information,
we design a FIR with cutoff frequency equal to 5 MHz and transition
width equal to 1 MHz. This causes about 50 dB attenuation between
adjacent 4.5 MHz effective LTE bandwidth by using 55 coefficients. The
frequency response of the FIR is shown in Fig. 3.

61



J. Mendes et al. Computer Communications 133 (2019) 59–66

Fig. 5. Experimental setup showing the virtualized base station and UE (user equipment)
each consisting of an x86 server connected to a USRP B210 via a USB3 interface.

In turn, the actual spectrum of our two 5 MHz VeNBs before being
sent to the USRP radio front-end is shown in Fig. 4. According to the
figure, the interference level to adjacent channel is about 60 dB lower
than the signal in that channel. This is a very good isolation at the
transmitter side, since it causes negligible signal to interference and
noise ratio (SINR) degradation. Note that we validate this in our next
experiments, where RF hardware non-ideal effects are also involved.

Finally, we validate the performance of our IQ switch for different
LTE modulation and coding schemes (MCSs). Specifically, Table 2
reports experimental data taken in our validation setup that shows
the SNR threshold required to achieve 1% Block Error Rate (BLER)—
a threshold that indicates a noticeable performance drop. We perform
the same experiment for two cases: (𝑖) with a single TX chain, i.e. no
adjacent channel interference (only additive white Gaussian noise),
and (𝑖𝑖) both TX chains, i.e. with AWGN noise and adjacent channel
interference. Although the adjacent channel interference is guaranteed
small by filter design, the colorized interference (higher at one edge of
channel than the other edge of channel) could bring out extra effects out
of white noise, being also necessary to evaluate sensitivity degradation
under this situation. The results, meanwhile, show that the sensitivity
degradation is minimal. It is important to note that this evaluation is
carried out on end-to-end test via real USRP RF hardware, validating in
this way the design approach taken.

3.2. End-to-end performance evaluation

In the sequel, we are interested in (𝑖) assessing whether current, off-
the-shelf x86 hardware is able to concurrently host multiple (software-
based) base stations with high throughput, and (𝑖𝑖) whether virtualiza-
tion, which is a requirement to keep isolation among VeNBs, results
in significant overhead. We carry out all our experiments on a pair
of servers with an Intel Xeon E5-1620 v2 3.7 GHz CPU (4 cores) and
16GB of RAM (Linux 4.4.1, QEMU 2.1.2) connected over USB3 to a
USRP B210 acting as a shared radio head (see Fig. 5). To guarantee
more deterministic results, we disable hyper-threading, turbo boost, and
all power saving features. Further, we limit the amount of cores that
an eNB can use to one. That is, for baremetal (i.e., non-virtualized),
we pin the eNB process to a single core and, for each VeNB, we pin
the entire QEMU process to a core, including the main QEMU thread,
the QEMU I/O threads and the VM’s vCPU thread. In terms of wireless
channel bandwidth for the eNBs, we consider 5 and 10 MHz, a common
configuration in femto and small-cell deployments [19], and use the
unlicensed 2.4 GHz band as frequency carrier. In addition, we ensure
that our experiments are properly isolated from external interfering
transmitters using the same band (e.g., WiFi networks) by connecting
the USRPs directly using SMA cables. To guarantee further accuracy of
the results, each represented value is obtained by doing an average over
25 individual runs. That is, besides multiple measurements for the same
value (e.g. throughput at 5 MHz, MCS 28), between sequential measures
the software components being evaluated are restarted.

3.2.1. Single eNB/VeNB throughput
We begin the evaluation by measuring Tx/downlink throughput

(i.e., from the base station to the UE) when running a single eNB, labeled
as baremetal or ‘‘BM’’), and then assess the overhead from virtualization
when using a single VeNB. In both cases, we use a wide range of
Modulation and Coding Schemes (MCSs), and carry out experiments for

Fig. 6. Throughput for a single baremetal eNB and for a single virtualized eNB for the
5 MHz and 10 MHz channels, different CPU frequencies and different MCSs.

the 5 MHz and 10 MHz channels as previously mentioned. In addition,
we downclock the CPU’s frequency to determine at which value the base
station can no longer match the theoretical maximum throughput.

The results are plotted in Fig. 6 (for convenience, we plot a line
depicting the theoretical maximum throughput for each MCS). In the
5 MHz case (Fig. 6), all setups, both virtualized (VeNB) and non-
virtualized (BM), are able to yield the theoretical maximum throughput
for all MCSs (up to a maximum of 18 Mb/s) even when the CPU
frequency is scaled down. The only exception is for the VeNB when
runnion on a CPU at 1.2 GHz, which experiences a slight drop for MCSs
higher than 22.

The 10 MHz case, shown in Fig. 6, shows that most setups can still
reach the theoretical max of up to 37 Mb/s, except in the case where the
CPU is running at 1.2 GHz for both the eNB and the VeNB, and at 2 GH
for the VeNB.

Finally, a remarkable observation is the fact that virtualization
(VeNB) does not have a noticeable overhead over its baremetal coun-
terpart in both cases (5 and 10 MHz).

3.2.2. Single eNB/VeNB CPU utilization
Next, we use the top tool to evaluate CPU utilization when running a

single eNB and a single VeNB. 7 shows the CPU usage of both baremetal
and VeNB cases, operating at 5 MHz over different CPU frequencies.
Importantly, this result justifies the fact that a CPU frequency of 1.2 GHz
could not reach the maximum theoretical throughput in the previous
experiment: the CPU is maxed out.

With 10 MHz bandwidth (7), the experimental results provide the
same explanation for the throughput drop shown in Fig. 6: a CPU
frequency of 1.2 GHz is overly low for the eNB (and subsequently
for VeNBs too) to achieve the theoretical maximum since the CPU is
fully utilized (as is the case in the VeNB at 2 GHz and higher MCS
values). Still, for common CPU frequencies, we are more than able to
host a single VeNB instance. In Section 3.2.4, we evaluate multiple
concurrent VeNBs. Prior to this, we show next an evaluation of the
decoding process, typically a more costly procedure.

62



J. Mendes et al. Computer Communications 133 (2019) 59–66

Fig. 7. Single-core CPU utilization when running a single eNB and a single VeNB on the
5 MHz and 10 MHz channels for different CPU frequencies and MCSs.

Worth noticing, on both figures, the VeNB saturates the CPU at
visibly less than 100% while in baremetal, the utilization nears 100%.
This is due to the fact that the represented VeNB lines reflect CPU
utilization of the QEMU vCPU thread which shares the core with the
remaining QEMU threads. Since those also need CPU time, the VeNB
vCPU utilization cannot ever reach 100% of the physical CPU usage.
Measuring only the vCPU thread has the intention of showing the
actual CPU utilization of the VeNB instead of evaluating QEMU and its
additional threads.

In the following, we assess the CPU consumption of independent
components within the eNB software (srsLTE). Our results are summa-
rized in Fig. 8 for different MCSs. In the figures, we represent with bars
the most representative consumers (functions) of CPU and aggregate
the remaining in a meta function labeled as ‘‘others’’. In particular, it is
worth highlighting how bit interleaving gains weight as the modulation
level grows, consuming up to 60% of the overall CPU usage with the
largest MCS compared to a (roughly) 12% consumption with MCS equal
to 1.

Another important point to observe is the cost of communication,
that is, the time spent transferring samples between a VeNB and the
IQ switch and thus representing an overhead of using virtualization
instead of a baremetal deployment. It is observable that the cost of
communication even at MCS 1 (where the relative amount of time spent
on communication is higher) does not exceed around 3.6% and, at MCS
28 where the CPU is under heavier usage, the relative cost drops to
around 1.4%. This indicates that communication (as an overhead of
virtualization) is not a bottleneck and, in fact, is a minor contributor
to CPU load increase when compared with other operations.

3.2.3. PHY receiving
So far we have focused on the eNB downlink scenario (i.e., signal

transmission). However, since receiving is one of the most

Fig. 8. CPU profiling of individual components of srsLTE when using 5 MHz.

computationally expensive operations of an LTE stack of an eNB
(i.e. uplink), we also need to prove that it is feasible for our commodity
server to perform this operation, both for the baremetal eNB and the
VeNB.

Evaluating the PHY receiving cost by setting up UE to eNB link is
non-trivial since it implies the use of L2 and above protocols (MAC,
PDCP, etc.) and requires the eNB to provide UL grants to the UE on a
separate channel (also a non-trivial process which requires scheduling
decisions). This effectively means that we would not only be measuring
the PHY receiving capabilities of the eNB but also other signaling and
protocol overhead.

Since our goal in this section is simply to evaluate the computational
expense of PHY receiving, we resort to evaluating the PHY receiving
capabilities of the UE. This procedure is on the same order of complexity
than the process of eNB receiving – in fact, it is roughly the same process
with the exception of one less FFT computation – thus allowing to assess
the viability of eNB receiving LTE signal on software. Fig. 9 depicts our
experimental evaluation on both 5 MHz and 10 MHz channels. The case
of 5 MHz is similar to the transmission experiment performed earlier
with CPU starvation issues when the CPU runs at 1.2 GHz.

In the 10 MHz case, the graph shows that we can correctly process
signals at 10 MHz for all CPU frequencies and MCSs when using
baremetal (eNB). The exception is at 1.2 GHz, which shows a spike when
the MCS index is 15: at this point the CPU is out of cycles; subsequently
any higher MCS shows lower CPU utilization because the system drops

63



J. Mendes et al. Computer Communications 133 (2019) 59–66

Fig. 9. Single-core CPU utilization for the PHY receiving process using a 10 MHz
bandwidth with different MCSs and CPU frequencies.

Fig. 10. Multi-core CPU utilization for multiple VeNBs running concurrently and different
IQ switch configurations.

samples and thus it does not consume cycles for decoding. In the
virtualized case, we see a substantial difference in CPU consumption
with respect to baremetal simply because, as stated before, the QEMU
threads are scheduled on the same core. That is, under load, the vCPU
utilization will not reach 100% of the core usage because the remaining
threads also need to be executed on the same core (and under load also
require CPU time to execute their tasks). Aside from that phenomenon,
the behavior is similar to baremetal decoding: there is a spike in usage
from which CPU utilization drops because samples are dropped and not
decoded. As opposed to baremetal, the values shows that virtualized
PHY receiving is only viable at 3.7 GHz.

Another thing to note is that the lines for the virtualized case at
1.2 and 2.0 GHz are only included for completeness: with the CPU
completely starved, there are so many samples dropped that the lines

Fig. 11. Memory consumption of multiple VeNBs.

are not representative of a genuine decoding effort, rather additional
computations.

3.2.4. Multiple VeNBs
Finally, we measure the CPU utilization and network throughput per-

formance for the whole system: including the IQ switch and concurrent
virtualized base stations (VeNBs) at both 5 and 10 MHz channel widths.
We evaluate up to 4 concurrent VeNBs, to match the 4 CPU cores we
have in our testbed. The represented IQ switch values correspond to a
baseline computational effort to merge 𝑁 signals at a given sampling
rate and is evaluated independently of the concurrent VeNBs.

The results in Fig. 10 evidence the feasibility of running multiple
eNBs on the same physical infrastructure. Note that, on our 4-core
machine we can run up to 4 × 5 MHz eNBs as well as 2 × 10 MHz
without exhausting our CPU resources. In all, this shows the feasibility
of running multiple, virtualized base stations over shared, inexpensive
commodity hardware.

We now evaluate the memory requirements of the VeNB software
in comparison to its guest OS (Debian) for different number of VeNBs.
The experiment consists of a downlink scenario with 1 to 3 VeNBs
with different MCSs and bandwidth configurations. A first conclusion
drawn out of our experiment is that memory consumption is practically
independent of the MCS and bandwidth configuration. Due to this, we
represent in Fig. 11 the memory utilization of a scenario with 5 MHz
and MCS equal to 28. It is shown that memory usage grows linearly with
the number of virtualized eNBs. This is explained by the fact that each
srsLTE instance is independent (running on its own VM) and therefore,
no libraries are shared between instances. In addition, the behavior of
the Linux dynamic loader is to load all required libraries (e.g. VOLK,
libboost) making the amount of memory required by srsLTE external
libraries independent on the MCS/bandwidth.

4. Use case: Operator infrastructure sharing

The previous evaluation section proves the concept of the archi-
tecture successfully. Based on the successful evaluation, we foresee an
obvious use case: Operator/technology independent infrastructure.

For that, and considering the results of our evaluation, a generalized
infrastructure architecture is proposed in Fig. 12. The architecture
is designed to be operator and technology agnostic. It can also be
used for one operator to host multiple virtual operators (MVNOs). The
benefit of technology independency is derived from the fact that multi-
stream data manipulation is performed at IQ sample level, which is
independent from specific standard/technology. In this architecture, the
IQ sample multiplexing/de-multiplexing is called IQ switch, because it
will connect multiple Shared Radio Heads (SRH) and virtual machines
(VM). Likewise, multiple radio heads are connected to the server, and
are shared among virtual machines via IQ switch.

64



J. Mendes et al. Computer Communications 133 (2019) 59–66

Fig. 12. Generalized architecture adopting infrastructure and spectrum management.

To fit the dynamic/diverse services/operators requirements of this
scenario, two management modules are needed: virtual machine man-
ager and radio manager. Through the virtual machine manager, differ-
ent operators could deploy their own base station software via virtual
machine images. Different base stations could use the same protocol
stacks or different technologies, allowing for example, the coexistence
of LTE with UMTS-only basestations (or any other technology). The
radio manager configures the IQ switch according to each virtual ma-
chine’s requirement: bandwidth, central frequency, number of antennas,
latency, etc. Performing in a similar manner to a network switch, the IQ
switch is also supposed to forward IQ samples among different ports
dynamically under the control of radio manager, which could fit into
the Software Defined Network (SDN) concept. Cooperating with virtual
machine manager, a highly dynamically and configurable infrastructure
would be made possible.

With this type of infrastructure deployed and managed (which could
be done by an independent third party rather than one of the operators
using the infrastructure), operators can deploy or retract their own base
station (using any desired protocol stack) easily. More importantly,
the configuration of the operator’s network can be adjusted dynami-
cally according to the operator’s plan or customer situation changing
(i.e. adjusting resources available dynamically). All the operations are
performed in software domain – virtual machine image deploying,
but operator still has control of full stack – from physical layer to
network layer. This approach gives operator a full base station (from
the functionality point of view) as if there was a real physical base
station available but without the need to operate and maintain its own
hardware and dedicated site.

5. Related work

Virtualization of resources in radio access networks is not new,
although most of the work focuses on spectrum efficiency. FlexRadio, for
instance, focuses on enabling sharing of RF resources through efficient
allocation by unifying MIMO, full-duplex and interference alignment
techniques [20]. SplitAP [21] ‘‘virtualizes’’ the network by providing
air-time guarantees to clients sharing an access point.

C-RAN is a cloud based centralized RAN architecture which is
composed by a BBU (Baseband Unit) pool located at a datacenter and
multiple RRUs (Remote Radio Head) located in coverage area (cell).
Virtualization is natural in the cloud, however, a very low latency and
high throughput front-haul is needed between BBU and RRU to meet
critical service/technology requirements. C-RAN is usually deployed by
a single operator to get the benefits of one virtual ‘‘super base station’’:

inter-cell coordination; dynamic resource (computation power, spec-
trum) allocation among multiple cells. On the contrary, our virtualized
small cell architecture does not require a high quality front-haul because
the Radio Head is bundled together with digital unit of base station in
the small cell area. Also different from one ‘‘super base station’’ for a
single operator, our small cell architecture allows multiple operators to
deploy their own full stack base station at the edge in the same shared
infrastructure.

Closer to the topic of this paper, a recent survey [22] mentions the
possibility of using a hypervisor to virtualize an LTE base station. The
work in [23] also suggests using hypervisors to virtualize eNBs, but
focuses instead on algorithms to schedule the air interface [23]. Perhaps
the closest work to ours is Virtual Wifi [24], which, as the name suggests,
uses KVM to virtualize a WiFi access point as opposed to an LTE base
station. The work also only uses a single VM/virtualized access point
and reports much higher delay overheads from virtualization (up to 35%
more).

A number of research papers have looked into running wireless
processing on different kinds of inexpensive hardware. For example,
Atomix [25] introduces a modular framework for building applica-
tions on wireless infrastructure with high performance by leveraging
multi-processor DSPs. Further, Sora [26] provides a high performance
software radio using a custom radio control board and implements
an 802.11a/b/g WiFi transceiver. Ziria [27] extends this work by
presenting a novel programming model that makes it easier to program
the Sora platform [27].

Finally, there are a number of modular, software frameworks for
running wireless applications on commodity x86 hardware. Perhaps
the most widely used one is GNU Radio, which can be used with
external hardware to create software-defined radios or without it as
simulation [16]. A number of other platforms target LTE, including
OpenAirInterface [9], OpenLTE [28] and srsLTE [8]. In this work we
settled on the latter since OpenLTE is incomplete and many features
are still under development and OpenAirInterface’s code is complex and
hard to split each LTE layer processing for rapid, early evaluation and
prototyping. We further used GNU radio to implement our mux/demux.

6. Conclusion and future work

In this work we introduced a working proof-of-concept system able
to run concurrently multiple, virtualized LTE PHY stacks over shared, in-
expensive commodity hardware with network throughput performance
equal or close to the theoretical maximum. We have also shown that it is
possible to use an IQ switch software module and a single shared radio
head to multiplex the signals from the base stations. To the best of our
knowledge there is not a large body of work on end-to-end base station
virtualization sharing common infrastructure (including the radio front-
end).

There are important points to work out in our future work. One
important drawback is the fact that our testbed is not comprised yet
of a fully functional virtualized LTE base station. As we explained in
our paper, we evaluate a PHY-only eNB instead which is the most
computationally expensive part, and its performance evaluation shows
that the CPU is able to cope with multiple concurrent base stations. In
addition, we do not yet know where the major performance bottlenecks
in our system are, nor have we compared our system to other base
station software such as OpenAirInterface. Note, moreover, that if the
price, power consumption or physical size of our solution were too large,
operators might be reluctant to deploy it. In future work we are looking
at the possibility of instantiating virtual base station instances on the
fly, when needed, in order to bring down power usage. We are also
looking at using single-board computers (e.g., an Intel NUC) instead of
the full-fledged x86 server we used in this work.

Regarding the IQ switch software module, as an improvement to
frequency multiplexing, we would need to investigate time multiplexing
and statistical multiplexing approaches to improve spectrum efficiency.

65



J. Mendes et al. Computer Communications 133 (2019) 59–66

To extend its performance supporting more radio heads and base sta-
tions for generalized infrastructure, multi-threading parallel processing
architecture needs to be investigated to utilize modern many-core CPU
platform.

Acknowledgments

The projects leading to this paper has received funding from the
European Union’s Horizon 2020 research and innovation programme
under grant agreement no. 67156 (Flex5Gware), no. 732174 (ORCA
project) and no. 761536 (5G-Transformer).

References

[1] Cisco. 10th Annual Cisco Visual Networking Index (VNI) Mobile Forecast Projects
70 Percent of Global Population Will Be Mobile Users. https://newsroom.cisco.
com/press-release-content?type=webcontent&articleId=1741352.

[2] The 5G Infrastructure Public Private Partnership. KPIs. https://5g-ppp.eu/kpis.
[3] N. Bhushan, J. Li, D. Malladi, Network densification: the dominant theme for

wireless evolution into 5G, in: IEEE Communications Magazine, IEEE, 2014.
[4] K. Larsen, Network Sharing Fundamentals. https://techneconomyblog.com/2014/

05/21/the-abc-of-network-sharingthe-fundamentals-part-i/, May 2014. [Online;
accessed 2017-02-27].

[5] GSMA report. Mobile Infrastructure Sharing. Tech. rep., September 2012.
[6] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I.

Pratt, A. Warfield, Xen and the art of virtualization, SIGOPS Oper. Syst. Rev. 37 (5)
(2003) 164–177.

[7] A. Kivity, Y. Kamay, D. Laor, U. Lublin, A. Liguori, KVM: the linux virtual machine
monitor, in: In Proc. 2007 Ottawa Linux Symposium, in: OLS ’07, 2007.

[8] I. Gomez-Miguelez, A. Garcia-Saavedra, P.D. Sutton, P. Serrano, C. Cano, D.J.
Leith, srsLTE: An open-source platform for LTE evolution and experimentation,
in: Proceedings of the Tenth ACM International Workshop on Wireless Network
Testbeds, Experimental Evaluation, and Characterization, in: WiNTECH ’16, ACM,
New York, NY, USA, 2016, pp. 25–32.

[9] N. Nikaein, M.K. Marina, S. Manickam, A. Dawson, R. Knopp, C.s. Bonnet, Openair-
interface: A flexible platform for 5G research, SIGCOMM Comput. Commun. Rev.
44 (5) (2014) 33–38.

[10] S. Sun, M. Kadoch, L. Gong, B. Rong, Integrating network function virtualization
with sdr and sdn for 4g/5g networks, IEEE Network 29 (3) (2015) 54–59.

[11] Facebook. Introducing opencellular: An open source wireless access platform.
https://code.facebook.com/posts/1754757044806180/introducing-opencellular-
an-open-source-wireless-access-platform.

[12] C.Y. Yeoh, M.H. Mokhtar, A.A.A. Rahman, Performance study of lte experimental
testbed using openairinterface, in: International Conference on Advanced Commu-
nication Technology (ICACT), IEEE, 2016.

[13] P. Rost, S. Talarico, M.C. Valenti, The complexityrate tradeoff of centralized radio
access networks, in: IEEE Transactions on Wireless Communications, IEEE, 2015.

[14] S. Bhaumik, S.P. Chandrabose, M.K. Jataprolu, G. Kumar, A. Muralidhar, P. Polakos,
V. Srinivasan, T. Woo, Cloudiq: A framework for processing base stations in a data
center, in: Proceedings of the 18th Annual International Conference on Mobile
Computing and Networking, in: Mobicom ’12, ACM, New York, NY, USA, 2012,
pp. 125–136.

[15] J. Mendes, X. Jiao, A. Garcia-Saavedra, F. Huici, I. Moerman, Cellular access multi-
tenancy through small cell virtualization and common rf front-end sharing, in:
Proceedings of the 11th Workshop on Wireless Network Testbeds, Experimental
Evaluation &#38; CHaracterization, in: WiNTECH ’17, ACM, New York, NY, USA,
2017, pp. 35–42.

[16] GNURadio. GNURadio, the Free and Open Software Radio Ecosystem. http://
gnuradio.org/.

[17] M. Kist, J. Rochol, L.A. DaSilva, C.B. Both, Hydra: A hypervisor for software defined
radios to enable radio virtualization in mobile networks, in: 2017 IEEE Conference
on Computer Communications Workshops (INFOCOM WKSHPS), 2017, pp. 960–
961.

[18] VOLK. VOLK: Vector-Optimized Library of Kernels. http://libvolk.org/.
[19] J. Rodriguez, Fundamentals of 5G Mobile Networks, John Wiley & Sons, 2015.
[20] B. Chen, V. Yenamandra, K. Srinivasan, Flexradio: Fully flexible radios and net-

works, in: 12th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 15), USENIX Association, Oakland, CA, 2015, pp. 205–218.

[21] G. Bhanage, D. Vete, I. Seskar, Splitap: Leveraging wireless network virtualization
for flexible sharing of wlans, in: Global Telecommunications Conference, IEEE,
2010.

[22] C. Liang, F.R. Yu, Wireless network virtualization: A survey, some research issues
and challenges, in: IEEE Communications Surveys and Tutorials, IEEE, 2015.

[23] Yasir Zaki, C.G. Liang Zhao, A. Timm-Giel, Lte wireless virtualization and spectrum
management, in: IFIP WMNC, 2010.

[24] L. Xia, S. Kumar, X. Yang, P. Gopalakrishnan, Y. Liu, S. Schoenberg, X. Guo, Virtual
wifi: Bring virtualization from wired to wireless, in: Proceedings of the 7th ACM
SIGPLAN/SIGOPS International Conference on Virtual Execution Environments, in:
VEE ’11, ACM, New York, NY, USA, 2011, pp. 181–192.

[25] M. Bansal, A. Schulman, S. Katti, Atomix: A framework for deploying signal
processing applications on wireless infrastructure, in: 12th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 15), USENIX Association,
Oakland, CA, 2015, pp. 173–188.

[26] K. Tan, H. Liu, J. Zhang, Y. Zhang, J. Fang, G.M. Voelker, Sora: High-performance
software radio using general-purpose multi-core processors, Commun. ACM 54 (1)
(2011) 99–107.

[27] M. Gowda, G. Stewart, G. Mainland, B. Radunović, D. Vytiniotis, D. Patterson,
Poster: Ziria: Language for rapid prototyping of wireless phy, in: Proceedings of
the 20th Annual International Conference on Mobile Computing and Networking,
in: MobiCom ’14, ACM, New York, NY, USA, 2014, pp. 359–362.

[28] OpenLTE. OpenLTE: An open source 3GPP LTE implementation. https://
sourceforge.net/p/openlte/wiki/Home/.

66

https://newsroom.cisco.com/press-release-content?type=webcontent&articleId=1741352
https://newsroom.cisco.com/press-release-content?type=webcontent&articleId=1741352
https://newsroom.cisco.com/press-release-content?type=webcontent&articleId=1741352
https://5g-ppp.eu/kpis
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb3
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb3
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb3
https://techneconomyblog.com/2014/05/21/the-abc-of-network-sharingthe-fundamentals-part-i/
https://techneconomyblog.com/2014/05/21/the-abc-of-network-sharingthe-fundamentals-part-i/
https://techneconomyblog.com/2014/05/21/the-abc-of-network-sharingthe-fundamentals-part-i/
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb6
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb6
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb6
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb6
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb6
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb7
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb7
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb7
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb8
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb8
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb8
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb8
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb8
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb8
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb8
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb8
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb8
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb9
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb9
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb9
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb9
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb9
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb10
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb10
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb10
https://code.facebook.com/posts/1754757044806180/introducing-opencellular-an-open-source-wireless-access-platform
https://code.facebook.com/posts/1754757044806180/introducing-opencellular-an-open-source-wireless-access-platform
https://code.facebook.com/posts/1754757044806180/introducing-opencellular-an-open-source-wireless-access-platform
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb12
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb12
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb12
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb12
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb12
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb13
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb13
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb13
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb14
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb14
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb14
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb14
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb14
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb14
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb14
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb14
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb14
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb15
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb15
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb15
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb15
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb15
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb15
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb15
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb15
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb15
http://gnuradio.org/
http://gnuradio.org/
http://gnuradio.org/
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb17
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb17
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb17
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb17
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb17
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb17
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb17
http://libvolk.org/
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb19
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb20
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb20
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb20
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb20
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb20
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb21
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb21
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb21
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb21
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb21
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb22
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb22
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb22
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb23
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb23
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb23
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb24
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb24
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb24
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb24
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb24
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb24
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb24
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb25
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb25
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb25
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb25
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb25
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb25
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb25
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb26
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb26
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb26
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb26
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb26
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb27
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb27
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb27
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb27
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb27
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb27
http://refhub.elsevier.com/S0140-3664(17)31287-2/sb27
https://sourceforge.net/p/openlte/wiki/Home/
https://sourceforge.net/p/openlte/wiki/Home/
https://sourceforge.net/p/openlte/wiki/Home/

	Cellular access multi-tenancy through small-cell virtualization and common RF front-end sharing
	Introduction
	Design and Implementation
	Validation and Evaluation
	IQ Switch Validation
	End-to-end Performance Evaluation
	Single eNB/VeNB throughput
	Single eNB/VeNB CPU utilization
	PHY Receiving
	Multiple VeNBs


	Use case: Operator infrastructure sharing
	Related Work
	Conclusion and Future Work
	Acknowledgments
	References


